5-cell
Initial vertex: ${{ v} _1} = {\left[\begin{array}{c} {\frac{1}{4}} {\sqrt{15}}\\ 0\\ 0\\ -{\frac{1}{4}}\end{array}\right]}$
Transforms for vertex generation:
$ { \tilde{T}} _i \in \left\{ \left[\begin{array}{cccc} 1& 0& 0& 0\\ 0& 1& 0& 0\\ 0& 0& 1& 0\\ 0& 0& 0& 1\end{array}\right], \left[\begin{array}{cccc} -{\frac{1}{3}}& -{\frac{\sqrt{2}}{\sqrt{3}}}& -{{\frac{1}{3}} {\sqrt{2}}}& 0\\ 0& \frac{1}{2}& -{{\frac{1}{2}} {\sqrt{3}}}& 0\\ {\frac{1}{3}} {{{2}} {{\sqrt{2}}}}& -{\frac{1}{{{2}} {{\sqrt{3}}}}}& -{\frac{1}{6}}& 0\\ 0& 0& 0& 1\end{array}\right], \left[\begin{array}{cccc} 1& 0& 0& 0\\ 0& -{\frac{1}{2}}& -{{\frac{1}{2}} {\sqrt{3}}}& 0\\ 0& {\frac{1}{2}} {\sqrt{3}}& -{\frac{1}{2}}& 0\\ 0& 0& 0& 1\end{array}\right], \left[\begin{array}{cccc} \frac{11}{12}& \frac{1}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}& -{\frac{1}{{{3}} \cdot {{2}} {{\sqrt{2}}}}}& -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}\\ -{\frac{1}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}& -{\frac{1}{2}}& -{\frac{1}{{{2}} {{\sqrt{3}}}}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}}\\ -{\frac{1}{{{3}} \cdot {{2}} {{\sqrt{2}}}}}& \frac{1}{{{2}} {{\sqrt{3}}}}& \frac{5}{6}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}\\ -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}& \frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}& -{\frac{1}{4}}\end{array}\right] \right\}$
${{{{{ T} _4}} {{{ V} _4}}} = {\left[\begin{array}{c} 0\\ 0\\ 0\\ 1\end{array}\right]}} = {{ V} _2}$
${{{{{ T} _2}} {{{ V} _1}}} = {\left[\begin{array}{c} -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}\\ 0\\ \frac{\sqrt{5}}{\sqrt{6}}\\ -{\frac{1}{4}}\end{array}\right]}} = {{ V} _3}$
${{{{{ T} _3}} {{{ V} _3}}} = {\left[\begin{array}{c} -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}\\ \frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}\\ -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}\\ -{\frac{1}{4}}\end{array}\right]}} = {{ V} _4}$
${{{{{ T} _2}} {{{ V} _2}}} = {\left[\begin{array}{c} -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}\\ -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}}\\ -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}\\ -{\frac{1}{4}}\end{array}\right]}} = {{ V} _5}$
${{{{{ T} _2}} {{{ T} _2}}} = {\left[\begin{array}{cccc} -{\frac{1}{3}}& 0& {\frac{1}{3}} {{{2}} {{\sqrt{2}}}}& 0\\ -{\frac{\sqrt{2}}{\sqrt{3}}}& \frac{1}{2}& -{\frac{1}{{{2}} {{\sqrt{3}}}}}& 0\\ -{{\frac{1}{3}} {\sqrt{2}}}& -{{\frac{1}{2}} {\sqrt{3}}}& -{\frac{1}{6}}& 0\\ 0& 0& 0& 1\end{array}\right]}} = {{ T} _5}$
${{{{{ T} _3}} {{{ T} _2}}} = {\left[\begin{array}{cccc} -{\frac{1}{3}}& -{\frac{\sqrt{2}}{\sqrt{3}}}& -{{\frac{1}{3}} {\sqrt{2}}}& 0\\ -{\frac{\sqrt{2}}{\sqrt{3}}}& 0& \frac{1}{\sqrt{3}}& 0\\ -{{\frac{1}{3}} {\sqrt{2}}}& \frac{1}{\sqrt{3}}& -{\frac{2}{3}}& 0\\ 0& 0& 0& 1\end{array}\right]}} = {{ T} _6}$
${{{{{ T} _4}} {{{ T} _2}}} = {\left[\begin{array}{cccc} -{\frac{5}{12}}& -{\frac{\sqrt{3}}{{{2}} {{\sqrt{2}}}}}& -{\frac{5}{{{3}} \cdot {{2}} {{\sqrt{2}}}}}& -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}\\ -{\frac{1}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}& 0& \frac{1}{\sqrt{3}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}}\\ \frac{7}{{{3}} \cdot {{2}} {{\sqrt{2}}}}& 0& -{\frac{1}{3}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}\\ -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}& \frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}& -{\frac{1}{4}}\end{array}\right]}} = {{ T} _7}$
${{{{{ T} _3}} {{{ T} _5}}} = {\left[\begin{array}{cccc} -{\frac{1}{3}}& 0& {\frac{1}{3}} {{{2}} {{\sqrt{2}}}}& 0\\ \frac{\sqrt{2}}{\sqrt{3}}& \frac{1}{2}& \frac{1}{{{2}} {{\sqrt{3}}}}& 0\\ -{{\frac{1}{3}} {\sqrt{2}}}& {\frac{1}{2}} {\sqrt{3}}& -{\frac{1}{6}}& 0\\ 0& 0& 0& 1\end{array}\right]}} = {{ T} _8}$
${{{{{ T} _4}} {{{ T} _5}}} = {\left[\begin{array}{cccc} -{\frac{5}{12}}& \frac{1}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}& \frac{7}{{{3}} \cdot {{2}} {{\sqrt{2}}}}& -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}\\ \frac{\sqrt{3}}{{{2}} {{\sqrt{2}}}}& 0& 0& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}}\\ -{\frac{5}{{{3}} \cdot {{2}} {{\sqrt{2}}}}}& -{\frac{1}{\sqrt{3}}}& -{\frac{1}{3}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}\\ -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}& \frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}& -{\frac{1}{4}}\end{array}\right]}} = {{ T} _9}$
${{{{{ T} _2}} {{{ T} _6}}} = {\left[\begin{array}{cccc} 1& 0& 0& 0\\ 0& -{\frac{1}{2}}& {\frac{1}{2}} {\sqrt{3}}& 0\\ 0& -{{\frac{1}{2}} {\sqrt{3}}}& -{\frac{1}{2}}& 0\\ 0& 0& 0& 1\end{array}\right]}} = {{{ T} _1} _0}$
${{{{{ T} _3}} {{{ T} _6}}} = {\left[\begin{array}{cccc} -{\frac{1}{3}}& -{\frac{\sqrt{2}}{\sqrt{3}}}& -{{\frac{1}{3}} {\sqrt{2}}}& 0\\ \frac{\sqrt{2}}{\sqrt{3}}& -{\frac{1}{2}}& \frac{1}{{{2}} {{\sqrt{3}}}}& 0\\ -{{\frac{1}{3}} {\sqrt{2}}}& -{\frac{1}{{{2}} {{\sqrt{3}}}}}& \frac{5}{6}& 0\\ 0& 0& 0& 1\end{array}\right]}} = {{{ T} _1} _1}$
${{{{{ T} _4}} {{{ T} _6}}} = {\left[\begin{array}{cccc} -{\frac{5}{12}}& -{\frac{\sqrt{2}}{\sqrt{3}}}& -{\frac{1}{{{3}} {{\sqrt{2}}}}}& -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}\\ \frac{\sqrt{3}}{{{2}} {{\sqrt{2}}}}& 0& 0& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}}\\ -{\frac{5}{{{3}} \cdot {{2}} {{\sqrt{2}}}}}& \frac{1}{\sqrt{3}}& -{\frac{1}{3}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}\\ -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}& 0& \frac{\sqrt{5}}{\sqrt{6}}& -{\frac{1}{4}}\end{array}\right]}} = {{{ T} _1} _2}$
${{{{{ T} _2}} {{{ T} _7}}} = {\left[\begin{array}{cccc} -{\frac{1}{12}}& \frac{1}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}& -{\frac{1}{{{3}} \cdot {{2}} {{\sqrt{2}}}}}& {\frac{1}{4}} {\sqrt{15}}\\ -{\frac{\sqrt{2}}{\sqrt{3}}}& 0& \frac{1}{\sqrt{3}}& 0\\ -{{\frac{1}{3}} {\sqrt{2}}}& -{\frac{1}{\sqrt{3}}}& -{\frac{2}{3}}& 0\\ -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}& \frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}& -{\frac{1}{4}}\end{array}\right]}} = {{{ T} _1} _3}$
${{{{{ T} _3}} {{{ T} _7}}} = {\left[\begin{array}{cccc} -{\frac{5}{12}}& -{\frac{\sqrt{3}}{{{2}} {{\sqrt{2}}}}}& -{\frac{5}{{{3}} \cdot {{2}} {{\sqrt{2}}}}}& -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}\\ -{\frac{\sqrt{3}}{{{2}} {{\sqrt{2}}}}}& 0& 0& \frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}\\ -{\frac{5}{{{3}} \cdot {{2}} {{\sqrt{2}}}}}& 0& \frac{2}{3}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}\\ -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}& \frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}& -{\frac{1}{4}}\end{array}\right]}} = {{{ T} _1} _4}$
${{{{{ T} _4}} {{{ T} _7}}} = {\left[\begin{array}{cccc} -{\frac{5}{12}}& -{\frac{\sqrt{2}}{\sqrt{3}}}& -{\frac{1}{{{3}} {{\sqrt{2}}}}}& -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}\\ \frac{1}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}& -{\frac{1}{2}}& \frac{1}{{{2}} {{\sqrt{3}}}}& \frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}\\ \frac{7}{{{3}} \cdot {{2}} {{\sqrt{2}}}}& -{\frac{1}{{{2}} {{\sqrt{3}}}}}& \frac{1}{6}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}\\ -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}& 0& \frac{\sqrt{5}}{\sqrt{6}}& -{\frac{1}{4}}\end{array}\right]}} = {{{ T} _1} _5}$
${{{{{ T} _3}} {{{ T} _8}}} = {\left[\begin{array}{cccc} -{\frac{1}{3}}& 0& {\frac{1}{3}} {{{2}} {{\sqrt{2}}}}& 0\\ 0& -{1}& 0& 0\\ {\frac{1}{3}} {{{2}} {{\sqrt{2}}}}& 0& \frac{1}{3}& 0\\ 0& 0& 0& 1\end{array}\right]}} = {{{ T} _1} _6}$
${{{{{ T} _4}} {{{ T} _8}}} = {\left[\begin{array}{cccc} -{\frac{1}{12}}& 0& {\frac{1}{3}} {{{2}} {{\sqrt{2}}}}& -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}\\ -{\frac{1}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}& -{\frac{1}{2}}& -{\frac{1}{{{2}} {{\sqrt{3}}}}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}}\\ -{\frac{1}{{{3}} \cdot {{2}} {{\sqrt{2}}}}}& {\frac{1}{2}} {\sqrt{3}}& -{\frac{1}{6}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}\\ {\frac{1}{4}} {\sqrt{15}}& 0& 0& -{\frac{1}{4}}\end{array}\right]}} = {{{ T} _1} _7}$
${{{{{ T} _2}} {{{ T} _9}}} = {\left[\begin{array}{cccc} -{\frac{1}{12}}& \frac{1}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}& -{\frac{1}{{{3}} \cdot {{2}} {{\sqrt{2}}}}}& {\frac{1}{4}} {\sqrt{15}}\\ \frac{\sqrt{2}}{\sqrt{3}}& \frac{1}{2}& \frac{1}{{{2}} {{\sqrt{3}}}}& 0\\ -{{\frac{1}{3}} {\sqrt{2}}}& \frac{1}{{{2}} {{\sqrt{3}}}}& \frac{5}{6}& 0\\ -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}& \frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}& -{\frac{1}{4}}\end{array}\right]}} = {{{ T} _1} _8}$
${{{{{ T} _3}} {{{ T} _9}}} = {\left[\begin{array}{cccc} -{\frac{5}{12}}& \frac{1}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}& \frac{7}{{{3}} \cdot {{2}} {{\sqrt{2}}}}& -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}\\ \frac{1}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}& \frac{1}{2}& \frac{1}{{{2}} {{\sqrt{3}}}}& \frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}\\ \frac{7}{{{3}} \cdot {{2}} {{\sqrt{2}}}}& \frac{1}{{{2}} {{\sqrt{3}}}}& \frac{1}{6}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}\\ -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}& \frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}& -{\frac{1}{4}}\end{array}\right]}} = {{{ T} _1} _9}$
${{{{{ T} _4}} {{{ T} _9}}} = {\left[\begin{array}{cccc} -{\frac{1}{12}}& 0& {\frac{1}{3}} {{{2}} {{\sqrt{2}}}}& -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}\\ \frac{1}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}& -{\frac{1}{2}}& \frac{1}{{{2}} {{\sqrt{3}}}}& \frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}\\ -{\frac{1}{{{3}} \cdot {{2}} {{\sqrt{2}}}}}& -{{\frac{1}{2}} {\sqrt{3}}}& -{\frac{1}{6}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}\\ {\frac{1}{4}} {\sqrt{15}}& 0& 0& -{\frac{1}{4}}\end{array}\right]}} = {{{ T} _2} _0}$
${{{{{ T} _2}} {{{{ T} _1} _0}}} = {\left[\begin{array}{cccc} -{\frac{1}{3}}& \frac{\sqrt{2}}{\sqrt{3}}& -{{\frac{1}{3}} {\sqrt{2}}}& 0\\ 0& \frac{1}{2}& {\frac{1}{2}} {\sqrt{3}}& 0\\ {\frac{1}{3}} {{{2}} {{\sqrt{2}}}}& \frac{1}{{{2}} {{\sqrt{3}}}}& -{\frac{1}{6}}& 0\\ 0& 0& 0& 1\end{array}\right]}} = {{{ T} _2} _1}$
${{{{{ T} _4}} {{{{ T} _1} _0}}} = {\left[\begin{array}{cccc} \frac{11}{12}& 0& \frac{1}{{{3}} {{\sqrt{2}}}}& -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}\\ -{\frac{1}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}& \frac{1}{2}& -{\frac{1}{{{2}} {{\sqrt{3}}}}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}}\\ -{\frac{1}{{{3}} \cdot {{2}} {{\sqrt{2}}}}}& -{{\frac{1}{2}} {\sqrt{3}}}& -{\frac{1}{6}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}\\ -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}& 0& \frac{\sqrt{5}}{\sqrt{6}}& -{\frac{1}{4}}\end{array}\right]}} = {{{ T} _2} _2}$
${{{{{ T} _2}} {{{{ T} _1} _1}}} = {\left[\begin{array}{cccc} -{\frac{1}{3}}& \frac{\sqrt{2}}{\sqrt{3}}& -{{\frac{1}{3}} {\sqrt{2}}}& 0\\ \frac{\sqrt{2}}{\sqrt{3}}& 0& -{\frac{1}{\sqrt{3}}}& 0\\ -{{\frac{1}{3}} {\sqrt{2}}}& -{\frac{1}{\sqrt{3}}}& -{\frac{2}{3}}& 0\\ 0& 0& 0& 1\end{array}\right]}} = {{{ T} _2} _3}$
${{{{{ T} _4}} {{{{ T} _1} _1}}} = {\left[\begin{array}{cccc} -{\frac{1}{12}}& -{\frac{\sqrt{2}}{\sqrt{3}}}& -{{\frac{1}{3}} {\sqrt{2}}}& -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}\\ -{\frac{1}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}& \frac{1}{2}& -{\frac{1}{{{2}} {{\sqrt{3}}}}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}}\\ -{\frac{1}{{{3}} \cdot {{2}} {{\sqrt{2}}}}}& -{\frac{1}{{{2}} {{\sqrt{3}}}}}& \frac{5}{6}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}\\ {\frac{1}{4}} {\sqrt{15}}& 0& 0& -{\frac{1}{4}}\end{array}\right]}} = {{{ T} _2} _4}$
${{{{{ T} _2}} {{{{ T} _1} _2}}} = {\left[\begin{array}{cccc} -{\frac{1}{12}}& 0& \frac{1}{{{3}} {{\sqrt{2}}}}& {\frac{1}{4}} {\sqrt{15}}\\ \frac{\sqrt{2}}{\sqrt{3}}& -{\frac{1}{2}}& \frac{1}{{{2}} {{\sqrt{3}}}}& 0\\ -{{\frac{1}{3}} {\sqrt{2}}}& -{{\frac{1}{2}} {\sqrt{3}}}& -{\frac{1}{6}}& 0\\ -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}& 0& \frac{\sqrt{5}}{\sqrt{6}}& -{\frac{1}{4}}\end{array}\right]}} = {{{ T} _2} _5}$
${{{{{ T} _4}} {{{{ T} _1} _2}}} = {\left[\begin{array}{cccc} -{\frac{1}{12}}& -{\frac{\sqrt{2}}{\sqrt{3}}}& -{{\frac{1}{3}} {\sqrt{2}}}& -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}\\ \frac{1}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}& 0& -{\frac{1}{\sqrt{3}}}& \frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}\\ -{\frac{1}{{{3}} \cdot {{2}} {{\sqrt{2}}}}}& \frac{1}{\sqrt{3}}& -{\frac{2}{3}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}\\ {\frac{1}{4}} {\sqrt{15}}& 0& 0& -{\frac{1}{4}}\end{array}\right]}} = {{{ T} _2} _6}$
${{{{{ T} _2}} {{{{ T} _1} _3}}} = {\left[\begin{array}{cccc} \frac{11}{12}& \frac{1}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}& -{\frac{1}{{{3}} \cdot {{2}} {{\sqrt{2}}}}}& -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}\\ 0& \frac{1}{2}& {\frac{1}{2}} {\sqrt{3}}& 0\\ \frac{1}{{{3}} {{\sqrt{2}}}}& \frac{1}{{{2}} {{\sqrt{3}}}}& -{\frac{1}{6}}& \frac{\sqrt{5}}{\sqrt{6}}\\ -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}& \frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}& -{\frac{1}{4}}\end{array}\right]}} = {{{ T} _2} _7}$
${{{{{ T} _2}} {{{{ T} _1} _4}}} = {\left[\begin{array}{cccc} \frac{11}{12}& \frac{1}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}& -{\frac{1}{{{3}} \cdot {{2}} {{\sqrt{2}}}}}& -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}\\ \frac{1}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}& 0& -{\frac{1}{\sqrt{3}}}& \frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}\\ -{\frac{1}{{{3}} \cdot {{2}} {{\sqrt{2}}}}}& -{\frac{1}{\sqrt{3}}}& -{\frac{2}{3}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}\\ -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}& \frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}& -{\frac{1}{4}}\end{array}\right]}} = {{{ T} _2} _8}$
${{{{{ T} _3}} {{{{ T} _1} _4}}} = {\left[\begin{array}{cccc} -{\frac{5}{12}}& -{\frac{\sqrt{3}}{{{2}} {{\sqrt{2}}}}}& -{\frac{5}{{{3}} \cdot {{2}} {{\sqrt{2}}}}}& -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}\\ \frac{\sqrt{2}}{\sqrt{3}}& 0& -{\frac{1}{\sqrt{3}}}& 0\\ -{\frac{1}{{{3}} {{\sqrt{2}}}}}& 0& -{\frac{1}{3}}& \frac{\sqrt{5}}{\sqrt{6}}\\ -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}& \frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}& -{\frac{1}{4}}\end{array}\right]}} = {{{ T} _2} _9}$
${{{{{ T} _2}} {{{{ T} _1} _5}}} = {\left[\begin{array}{cccc} -{\frac{5}{12}}& \frac{\sqrt{2}}{\sqrt{3}}& -{\frac{1}{{{3}} {{\sqrt{2}}}}}& -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}\\ -{\frac{\sqrt{3}}{{{2}} {{\sqrt{2}}}}}& 0& 0& \frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}\\ -{\frac{5}{{{3}} \cdot {{2}} {{\sqrt{2}}}}}& -{\frac{1}{\sqrt{3}}}& -{\frac{1}{3}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}\\ -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}& 0& \frac{\sqrt{5}}{\sqrt{6}}& -{\frac{1}{4}}\end{array}\right]}} = {{{ T} _3} _0}$
${{{{{ T} _3}} {{{{ T} _1} _5}}} = {\left[\begin{array}{cccc} -{\frac{5}{12}}& -{\frac{\sqrt{2}}{\sqrt{3}}}& -{\frac{1}{{{3}} {{\sqrt{2}}}}}& -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}\\ -{\frac{\sqrt{2}}{\sqrt{3}}}& \frac{1}{2}& -{\frac{1}{{{2}} {{\sqrt{3}}}}}& 0\\ -{\frac{1}{{{3}} {{\sqrt{2}}}}}& -{\frac{1}{{{2}} {{\sqrt{3}}}}}& \frac{1}{6}& \frac{\sqrt{5}}{\sqrt{6}}\\ -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}& 0& \frac{\sqrt{5}}{\sqrt{6}}& -{\frac{1}{4}}\end{array}\right]}} = {{{ T} _3} _1}$
${{{{{ T} _2}} {{{{ T} _1} _6}}} = {\left[\begin{array}{cccc} -{\frac{1}{3}}& \frac{\sqrt{2}}{\sqrt{3}}& -{{\frac{1}{3}} {\sqrt{2}}}& 0\\ -{\frac{\sqrt{2}}{\sqrt{3}}}& -{\frac{1}{2}}& -{\frac{1}{{{2}} {{\sqrt{3}}}}}& 0\\ -{{\frac{1}{3}} {\sqrt{2}}}& \frac{1}{{{2}} {{\sqrt{3}}}}& \frac{5}{6}& 0\\ 0& 0& 0& 1\end{array}\right]}} = {{{ T} _3} _2}$
${{{{{ T} _4}} {{{{ T} _1} _6}}} = {\left[\begin{array}{cccc} -{\frac{5}{12}}& -{\frac{1}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}& \frac{7}{{{3}} \cdot {{2}} {{\sqrt{2}}}}& -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}\\ -{\frac{1}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}& \frac{1}{2}& -{\frac{1}{{{2}} {{\sqrt{3}}}}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}}\\ \frac{7}{{{3}} \cdot {{2}} {{\sqrt{2}}}}& -{\frac{1}{{{2}} {{\sqrt{3}}}}}& \frac{1}{6}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}\\ -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}& -{\frac{1}{4}}\end{array}\right]}} = {{{ T} _3} _3}$
${{{{{ T} _2}} {{{{ T} _1} _7}}} = {\left[\begin{array}{cccc} \frac{1}{4}& 0& 0& {\frac{1}{4}} {\sqrt{15}}\\ 0& -{1}& 0& 0\\ 0& 0& 1& 0\\ {\frac{1}{4}} {\sqrt{15}}& 0& 0& -{\frac{1}{4}}\end{array}\right]}} = {{{ T} _3} _4}$
${{{{{ T} _4}} {{{{ T} _1} _7}}} = {\left[\begin{array}{cccc} -{\frac{5}{12}}& -{\frac{1}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}& \frac{7}{{{3}} \cdot {{2}} {{\sqrt{2}}}}& -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}\\ -{\frac{\sqrt{3}}{{{2}} {{\sqrt{2}}}}}& 0& 0& \frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}\\ -{\frac{5}{{{3}} \cdot {{2}} {{\sqrt{2}}}}}& \frac{1}{\sqrt{3}}& -{\frac{1}{3}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}\\ -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}& -{\frac{1}{4}}\end{array}\right]}} = {{{ T} _3} _5}$
${{{{{ T} _3}} {{{{ T} _1} _8}}} = {\left[\begin{array}{cccc} -{\frac{1}{12}}& \frac{1}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}& -{\frac{1}{{{3}} \cdot {{2}} {{\sqrt{2}}}}}& {\frac{1}{4}} {\sqrt{15}}\\ 0& -{\frac{1}{2}}& -{{\frac{1}{2}} {\sqrt{3}}}& 0\\ {\frac{1}{3}} {{{2}} {{\sqrt{2}}}}& \frac{1}{{{2}} {{\sqrt{3}}}}& -{\frac{1}{6}}& 0\\ -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}& \frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}& -{\frac{1}{4}}\end{array}\right]}} = {{{ T} _3} _6}$
${{{{{ T} _3}} {{{{ T} _1} _9}}} = {\left[\begin{array}{cccc} -{\frac{5}{12}}& \frac{1}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}& \frac{7}{{{3}} \cdot {{2}} {{\sqrt{2}}}}& -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}\\ -{\frac{\sqrt{2}}{\sqrt{3}}}& -{\frac{1}{2}}& -{\frac{1}{{{2}} {{\sqrt{3}}}}}& 0\\ -{\frac{1}{{{3}} {{\sqrt{2}}}}}& \frac{1}{{{2}} {{\sqrt{3}}}}& \frac{1}{6}& \frac{\sqrt{5}}{\sqrt{6}}\\ -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}& \frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}& -{\frac{1}{4}}\end{array}\right]}} = {{{ T} _3} _7}$
${{{{{ T} _2}} {{{{ T} _2} _0}}} = {\left[\begin{array}{cccc} -{\frac{1}{12}}& \frac{\sqrt{2}}{\sqrt{3}}& -{{\frac{1}{3}} {\sqrt{2}}}& -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}\\ \frac{1}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}& \frac{1}{2}& \frac{1}{{{2}} {{\sqrt{3}}}}& \frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}\\ -{\frac{1}{{{3}} \cdot {{2}} {{\sqrt{2}}}}}& \frac{1}{{{2}} {{\sqrt{3}}}}& \frac{5}{6}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}\\ {\frac{1}{4}} {\sqrt{15}}& 0& 0& -{\frac{1}{4}}\end{array}\right]}} = {{{ T} _3} _8}$
${{{{{ T} _3}} {{{{ T} _2} _0}}} = {\left[\begin{array}{cccc} -{\frac{1}{12}}& 0& {\frac{1}{3}} {{{2}} {{\sqrt{2}}}}& -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}\\ 0& 1& 0& 0\\ \frac{1}{{{3}} {{\sqrt{2}}}}& 0& \frac{1}{3}& \frac{\sqrt{5}}{\sqrt{6}}\\ {\frac{1}{4}} {\sqrt{15}}& 0& 0& -{\frac{1}{4}}\end{array}\right]}} = {{{ T} _3} _9}$
${{{{{ T} _4}} {{{{ T} _2} _1}}} = {\left[\begin{array}{cccc} -{\frac{5}{12}}& \frac{\sqrt{2}}{\sqrt{3}}& -{\frac{1}{{{3}} {{\sqrt{2}}}}}& -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}\\ -{\frac{1}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}& -{\frac{1}{2}}& -{\frac{1}{{{2}} {{\sqrt{3}}}}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}}\\ \frac{7}{{{3}} \cdot {{2}} {{\sqrt{2}}}}& \frac{1}{{{2}} {{\sqrt{3}}}}& \frac{1}{6}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}\\ -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}& 0& \frac{\sqrt{5}}{\sqrt{6}}& -{\frac{1}{4}}\end{array}\right]}} = {{{ T} _4} _0}$
${{{{{ T} _2}} {{{{ T} _2} _2}}} = {\left[\begin{array}{cccc} -{\frac{1}{12}}& 0& \frac{1}{{{3}} {{\sqrt{2}}}}& {\frac{1}{4}} {\sqrt{15}}\\ 0& 1& 0& 0\\ {\frac{1}{3}} {{{2}} {{\sqrt{2}}}}& 0& \frac{1}{3}& 0\\ -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}& 0& \frac{\sqrt{5}}{\sqrt{6}}& -{\frac{1}{4}}\end{array}\right]}} = {{{ T} _4} _1}$
${{{{{ T} _3}} {{{{ T} _2} _2}}} = {\left[\begin{array}{cccc} \frac{11}{12}& 0& \frac{1}{{{3}} {{\sqrt{2}}}}& -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}\\ \frac{1}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}& \frac{1}{2}& \frac{1}{{{2}} {{\sqrt{3}}}}& \frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}\\ -{\frac{1}{{{3}} \cdot {{2}} {{\sqrt{2}}}}}& {\frac{1}{2}} {\sqrt{3}}& -{\frac{1}{6}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}\\ -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}& 0& \frac{\sqrt{5}}{\sqrt{6}}& -{\frac{1}{4}}\end{array}\right]}} = {{{ T} _4} _2}$
${{{{{ T} _4}} {{{{ T} _2} _3}}} = {\left[\begin{array}{cccc} -{\frac{1}{12}}& \frac{\sqrt{2}}{\sqrt{3}}& -{{\frac{1}{3}} {\sqrt{2}}}& -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}\\ -{\frac{1}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}& 0& \frac{1}{\sqrt{3}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}}\\ -{\frac{1}{{{3}} \cdot {{2}} {{\sqrt{2}}}}}& -{\frac{1}{\sqrt{3}}}& -{\frac{2}{3}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}\\ {\frac{1}{4}} {\sqrt{15}}& 0& 0& -{\frac{1}{4}}\end{array}\right]}} = {{{ T} _4} _3}$
${{{{{ T} _2}} {{{{ T} _2} _4}}} = {\left[\begin{array}{cccc} \frac{1}{4}& 0& 0& {\frac{1}{4}} {\sqrt{15}}\\ 0& \frac{1}{2}& -{{\frac{1}{2}} {\sqrt{3}}}& 0\\ 0& -{{\frac{1}{2}} {\sqrt{3}}}& -{\frac{1}{2}}& 0\\ {\frac{1}{4}} {\sqrt{15}}& 0& 0& -{\frac{1}{4}}\end{array}\right]}} = {{{ T} _4} _4}$
${{{{{ T} _2}} {{{{ T} _2} _5}}} = {\left[\begin{array}{cccc} -{\frac{5}{12}}& \frac{\sqrt{2}}{\sqrt{3}}& -{\frac{1}{{{3}} {{\sqrt{2}}}}}& -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}\\ \frac{\sqrt{2}}{\sqrt{3}}& \frac{1}{2}& \frac{1}{{{2}} {{\sqrt{3}}}}& 0\\ -{\frac{1}{{{3}} {{\sqrt{2}}}}}& \frac{1}{{{2}} {{\sqrt{3}}}}& \frac{1}{6}& \frac{\sqrt{5}}{\sqrt{6}}\\ -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}& 0& \frac{\sqrt{5}}{\sqrt{6}}& -{\frac{1}{4}}\end{array}\right]}} = {{{ T} _4} _5}$
${{{{{ T} _3}} {{{{ T} _2} _6}}} = {\left[\begin{array}{cccc} -{\frac{1}{12}}& -{\frac{\sqrt{2}}{\sqrt{3}}}& -{{\frac{1}{3}} {\sqrt{2}}}& -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}\\ 0& -{\frac{1}{2}}& {\frac{1}{2}} {\sqrt{3}}& 0\\ \frac{1}{{{3}} {{\sqrt{2}}}}& -{\frac{1}{{{2}} {{\sqrt{3}}}}}& -{\frac{1}{6}}& \frac{\sqrt{5}}{\sqrt{6}}\\ {\frac{1}{4}} {\sqrt{15}}& 0& 0& -{\frac{1}{4}}\end{array}\right]}} = {{{ T} _4} _6}$
${{{{{ T} _4}} {{{{ T} _2} _7}}} = {\left[\begin{array}{cccc} \frac{11}{12}& 0& \frac{1}{{{3}} {{\sqrt{2}}}}& -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}\\ 0& -{1}& 0& 0\\ \frac{1}{{{3}} {{\sqrt{2}}}}& 0& \frac{1}{3}& \frac{\sqrt{5}}{\sqrt{6}}\\ -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}& 0& \frac{\sqrt{5}}{\sqrt{6}}& -{\frac{1}{4}}\end{array}\right]}} = {{{ T} _4} _7}$
${{{{{ T} _4}} {{{{ T} _3} _2}}} = {\left[\begin{array}{cccc} -{\frac{5}{12}}& \frac{\sqrt{3}}{{{2}} {{\sqrt{2}}}}& -{\frac{5}{{{3}} \cdot {{2}} {{\sqrt{2}}}}}& -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}\\ \frac{\sqrt{3}}{{{2}} {{\sqrt{2}}}}& 0& 0& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}}\\ -{\frac{5}{{{3}} \cdot {{2}} {{\sqrt{2}}}}}& 0& \frac{2}{3}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}\\ -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}& -{\frac{1}{4}}\end{array}\right]}} = {{{ T} _4} _8}$
${{{{{ T} _2}} {{{{ T} _3} _3}}} = {\left[\begin{array}{cccc} -{\frac{1}{12}}& -{\frac{1}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}& -{\frac{1}{{{3}} \cdot {{2}} {{\sqrt{2}}}}}& {\frac{1}{4}} {\sqrt{15}}\\ -{\frac{\sqrt{2}}{\sqrt{3}}}& \frac{1}{2}& -{\frac{1}{{{2}} {{\sqrt{3}}}}}& 0\\ -{{\frac{1}{3}} {\sqrt{2}}}& -{\frac{1}{{{2}} {{\sqrt{3}}}}}& \frac{5}{6}& 0\\ -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}& -{\frac{1}{4}}\end{array}\right]}} = {{{ T} _4} _9}$
${{{{{ T} _2}} {{{{ T} _3} _4}}} = {\left[\begin{array}{cccc} -{\frac{1}{12}}& \frac{\sqrt{2}}{\sqrt{3}}& -{{\frac{1}{3}} {\sqrt{2}}}& -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}\\ 0& -{\frac{1}{2}}& -{{\frac{1}{2}} {\sqrt{3}}}& 0\\ \frac{1}{{{3}} {{\sqrt{2}}}}& \frac{1}{{{2}} {{\sqrt{3}}}}& -{\frac{1}{6}}& \frac{\sqrt{5}}{\sqrt{6}}\\ {\frac{1}{4}} {\sqrt{15}}& 0& 0& -{\frac{1}{4}}\end{array}\right]}} = {{{ T} _5} _0}$
${{{{{ T} _2}} {{{{ T} _3} _5}}} = {\left[\begin{array}{cccc} \frac{11}{12}& -{\frac{1}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}& -{\frac{1}{{{3}} \cdot {{2}} {{\sqrt{2}}}}}& -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}\\ \frac{1}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}& -{\frac{1}{2}}& \frac{1}{{{2}} {{\sqrt{3}}}}& \frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}\\ -{\frac{1}{{{3}} \cdot {{2}} {{\sqrt{2}}}}}& -{\frac{1}{{{2}} {{\sqrt{3}}}}}& \frac{5}{6}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}\\ -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}& -{\frac{1}{4}}\end{array}\right]}} = {{{ T} _5} _1}$
${{{{{ T} _3}} {{{{ T} _3} _5}}} = {\left[\begin{array}{cccc} -{\frac{5}{12}}& -{\frac{1}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}& \frac{7}{{{3}} \cdot {{2}} {{\sqrt{2}}}}& -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}\\ \frac{\sqrt{2}}{\sqrt{3}}& -{\frac{1}{2}}& \frac{1}{{{2}} {{\sqrt{3}}}}& 0\\ -{\frac{1}{{{3}} {{\sqrt{2}}}}}& -{\frac{1}{{{2}} {{\sqrt{3}}}}}& \frac{1}{6}& \frac{\sqrt{5}}{\sqrt{6}}\\ -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}& -{\frac{1}{4}}\end{array}\right]}} = {{{ T} _5} _2}$
${{{{{ T} _4}} {{{{ T} _3} _6}}} = {\left[\begin{array}{cccc} -{\frac{1}{12}}& -{\frac{1}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}& -{\frac{1}{{{3}} \cdot {{2}} {{\sqrt{2}}}}}& {\frac{1}{4}} {\sqrt{15}}\\ 0& -{\frac{1}{2}}& {\frac{1}{2}} {\sqrt{3}}& 0\\ {\frac{1}{3}} {{{2}} {{\sqrt{2}}}}& -{\frac{1}{{{2}} {{\sqrt{3}}}}}& -{\frac{1}{6}}& 0\\ -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}& -{\frac{1}{4}}\end{array}\right]}} = {{{ T} _5} _3}$
${{{{{ T} _2}} {{{{ T} _4} _0}}} = {\left[\begin{array}{cccc} -{\frac{1}{12}}& 0& \frac{1}{{{3}} {{\sqrt{2}}}}& {\frac{1}{4}} {\sqrt{15}}\\ -{\frac{\sqrt{2}}{\sqrt{3}}}& -{\frac{1}{2}}& -{\frac{1}{{{2}} {{\sqrt{3}}}}}& 0\\ -{{\frac{1}{3}} {\sqrt{2}}}& {\frac{1}{2}} {\sqrt{3}}& -{\frac{1}{6}}& 0\\ -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}& 0& \frac{\sqrt{5}}{\sqrt{6}}& -{\frac{1}{4}}\end{array}\right]}} = {{{ T} _5} _4}$
${{{{{ T} _4}} {{{{ T} _4} _0}}} = {\left[\begin{array}{cccc} -{\frac{5}{12}}& \frac{\sqrt{3}}{{{2}} {{\sqrt{2}}}}& -{\frac{5}{{{3}} \cdot {{2}} {{\sqrt{2}}}}}& -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}\\ \frac{1}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}& 0& -{\frac{1}{\sqrt{3}}}& \frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}\\ \frac{7}{{{3}} \cdot {{2}} {{\sqrt{2}}}}& 0& -{\frac{1}{3}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}\\ -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}& -{\frac{1}{4}}\end{array}\right]}} = {{{ T} _5} _5}$
${{{{{ T} _2}} {{{{ T} _4} _3}}} = {\left[\begin{array}{cccc} \frac{1}{4}& 0& 0& {\frac{1}{4}} {\sqrt{15}}\\ 0& \frac{1}{2}& {\frac{1}{2}} {\sqrt{3}}& 0\\ 0& {\frac{1}{2}} {\sqrt{3}}& -{\frac{1}{2}}& 0\\ {\frac{1}{4}} {\sqrt{15}}& 0& 0& -{\frac{1}{4}}\end{array}\right]}} = {{{ T} _5} _6}$
${{{{{ T} _4}} {{{{ T} _4} _7}}} = {\left[\begin{array}{cccc} \frac{11}{12}& -{\frac{1}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}& -{\frac{1}{{{3}} \cdot {{2}} {{\sqrt{2}}}}}& -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}\\ 0& \frac{1}{2}& -{{\frac{1}{2}} {\sqrt{3}}}& 0\\ \frac{1}{{{3}} {{\sqrt{2}}}}& -{\frac{1}{{{2}} {{\sqrt{3}}}}}& -{\frac{1}{6}}& \frac{\sqrt{5}}{\sqrt{6}}\\ -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}& -{\frac{1}{4}}\end{array}\right]}} = {{{ T} _5} _7}$
${{{{{ T} _2}} {{{{ T} _4} _8}}} = {\left[\begin{array}{cccc} -{\frac{1}{12}}& -{\frac{1}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}& -{\frac{1}{{{3}} \cdot {{2}} {{\sqrt{2}}}}}& {\frac{1}{4}} {\sqrt{15}}\\ \frac{\sqrt{2}}{\sqrt{3}}& 0& -{\frac{1}{\sqrt{3}}}& 0\\ -{{\frac{1}{3}} {\sqrt{2}}}& \frac{1}{\sqrt{3}}& -{\frac{2}{3}}& 0\\ -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}& -{\frac{1}{4}}\end{array}\right]}} = {{{ T} _5} _8}$
${{{{{ T} _4}} {{{{ T} _5} _0}}} = {\left[\begin{array}{cccc} -{\frac{5}{12}}& \frac{\sqrt{3}}{{{2}} {{\sqrt{2}}}}& -{\frac{5}{{{3}} \cdot {{2}} {{\sqrt{2}}}}}& -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}\\ -{\frac{\sqrt{2}}{\sqrt{3}}}& 0& \frac{1}{\sqrt{3}}& 0\\ -{\frac{1}{{{3}} {{\sqrt{2}}}}}& 0& -{\frac{1}{3}}& \frac{\sqrt{5}}{\sqrt{6}}\\ -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}& -{\frac{1}{4}}\end{array}\right]}} = {{{ T} _5} _9}$
${{{{{ T} _3}} {{{{ T} _5} _7}}} = {\left[\begin{array}{cccc} \frac{11}{12}& -{\frac{1}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}& -{\frac{1}{{{3}} \cdot {{2}} {{\sqrt{2}}}}}& -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}\\ -{\frac{1}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}& 0& \frac{1}{\sqrt{3}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}}\\ -{\frac{1}{{{3}} \cdot {{2}} {{\sqrt{2}}}}}& \frac{1}{\sqrt{3}}& -{\frac{2}{3}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}\\ -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}& -{\frac{1}{4}}\end{array}\right]}} = {{{ T} _6} _0}$
Vertexes as column vectors:
${V} = {\left[\begin{array}{ccccc} {\frac{1}{4}} {\sqrt{15}}& 0& -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}& -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}& -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}\\ 0& 0& 0& \frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}}\\ 0& 0& \frac{\sqrt{5}}{\sqrt{6}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}\\ -{\frac{1}{4}}& 1& -{\frac{1}{4}}& -{\frac{1}{4}}& -{\frac{1}{4}}\end{array}\right]}$
Vertex inner products:
${{{{{ V} ^T}} {{V}}} = {{{\left[\begin{array}{cccc} {\frac{1}{4}} {\sqrt{15}}& 0& 0& -{\frac{1}{4}}\\ 0& 0& 0& 1\\ -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}& 0& \frac{\sqrt{5}}{\sqrt{6}}& -{\frac{1}{4}}\\ -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}& \frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}& -{\frac{1}{4}}\\ -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}& -{\frac{1}{4}}\end{array}\right]}} {{\left[\begin{array}{ccccc} {\frac{1}{4}} {\sqrt{15}}& 0& -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}& -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}& -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}\\ 0& 0& 0& \frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}}\\ 0& 0& \frac{\sqrt{5}}{\sqrt{6}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}\\ -{\frac{1}{4}}& 1& -{\frac{1}{4}}& -{\frac{1}{4}}& -{\frac{1}{4}}\end{array}\right]}}}} = {\left[\begin{array}{ccccc} 1& -{\frac{1}{4}}& -{\frac{1}{4}}& -{\frac{1}{4}}& -{\frac{1}{4}}\\ -{\frac{1}{4}}& 1& -{\frac{1}{4}}& -{\frac{1}{4}}& -{\frac{1}{4}}\\ -{\frac{1}{4}}& -{\frac{1}{4}}& 1& -{\frac{1}{4}}& -{\frac{1}{4}}\\ -{\frac{1}{4}}& -{\frac{1}{4}}& -{\frac{1}{4}}& 1& -{\frac{1}{4}}\\ -{\frac{1}{4}}& -{\frac{1}{4}}& -{\frac{1}{4}}& -{\frac{1}{4}}& 1\end{array}\right]}$
Table of $T_i \cdot v_j = v_k$:
|
V1 |
V2 |
V3 |
V4 |
V5 |
T1 |
V1
|
V2
|
V3
|
V4
|
V5
|
T2 |
V2
|
V3
|
V1
|
V4
|
V5
|
T3 |
V1
|
V3
|
V4
|
V2
|
V5
|
T4 |
V1
|
V2
|
V4
|
V5
|
V3
|
T5 |
V3
|
V1
|
V2
|
V4
|
V5
|
T6 |
V3
|
V4
|
V1
|
V2
|
V5
|
T7 |
V2
|
V4
|
V1
|
V5
|
V3
|
T8 |
V4
|
V1
|
V3
|
V2
|
V5
|
T9 |
V4
|
V1
|
V2
|
V5
|
V3
|
T10 |
V1
|
V4
|
V2
|
V3
|
V5
|
T11 |
V4
|
V2
|
V1
|
V3
|
V5
|
T12 |
V4
|
V5
|
V1
|
V2
|
V3
|
T13 |
V3
|
V4
|
V2
|
V5
|
V1
|
T14 |
V3
|
V2
|
V1
|
V5
|
V4
|
T15 |
V2
|
V5
|
V1
|
V3
|
V4
|
T16 |
V2
|
V1
|
V4
|
V3
|
V5
|
T17 |
V5
|
V1
|
V4
|
V2
|
V3
|
T18 |
V4
|
V2
|
V3
|
V5
|
V1
|
T19 |
V2
|
V1
|
V3
|
V5
|
V4
|
T20 |
V5
|
V1
|
V2
|
V3
|
V4
|
T21 |
V2
|
V4
|
V3
|
V1
|
V5
|
T22 |
V1
|
V5
|
V2
|
V4
|
V3
|
T23 |
V4
|
V3
|
V2
|
V1
|
V5
|
T24 |
V5
|
V2
|
V1
|
V4
|
V3
|
T25 |
V4
|
V5
|
V2
|
V3
|
V1
|
T26 |
V5
|
V3
|
V1
|
V2
|
V4
|
T27 |
V1
|
V4
|
V3
|
V5
|
V2
|
T28 |
V1
|
V3
|
V2
|
V5
|
V4
|
T29 |
V4
|
V3
|
V1
|
V5
|
V2
|
T30 |
V3
|
V5
|
V2
|
V1
|
V4
|
T31 |
V3
|
V5
|
V1
|
V4
|
V2
|
T32 |
V3
|
V2
|
V4
|
V1
|
V5
|
T33 |
V2
|
V1
|
V5
|
V4
|
V3
|
T34 |
V5
|
V2
|
V4
|
V3
|
V1
|
T35 |
V3
|
V1
|
V5
|
V2
|
V4
|
T36 |
V2
|
V3
|
V4
|
V5
|
V1
|
T37 |
V3
|
V1
|
V4
|
V5
|
V2
|
T38 |
V5
|
V2
|
V3
|
V1
|
V4
|
T39 |
V5
|
V1
|
V3
|
V4
|
V2
|
T40 |
V2
|
V5
|
V4
|
V1
|
V3
|
T41 |
V2
|
V5
|
V3
|
V4
|
V1
|
T42 |
V1
|
V5
|
V3
|
V2
|
V4
|
T43 |
V5
|
V4
|
V2
|
V1
|
V3
|
T44 |
V5
|
V3
|
V2
|
V4
|
V1
|
T45 |
V4
|
V5
|
V3
|
V1
|
V2
|
T46 |
V5
|
V4
|
V1
|
V3
|
V2
|
T47 |
V1
|
V5
|
V4
|
V3
|
V2
|
T48 |
V4
|
V2
|
V5
|
V1
|
V3
|
T49 |
V3
|
V2
|
V5
|
V4
|
V1
|
T50 |
V5
|
V3
|
V4
|
V1
|
V2
|
T51 |
V1
|
V2
|
V5
|
V3
|
V4
|
T52 |
V4
|
V1
|
V5
|
V3
|
V2
|
T53 |
V2
|
V4
|
V5
|
V3
|
V1
|
T54 |
V3
|
V5
|
V4
|
V2
|
V1
|
T55 |
V2
|
V3
|
V5
|
V1
|
V4
|
T56 |
V5
|
V4
|
V3
|
V2
|
V1
|
T57 |
V1
|
V3
|
V5
|
V4
|
V2
|
T58 |
V4
|
V3
|
V5
|
V2
|
V1
|
T59 |
V3
|
V4
|
V5
|
V1
|
V2
|
T60 |
V1
|
V4
|
V5
|
V2
|
V3
|
Table of $T_i \cdot T_j = T_k$:
|
T1 |
T2 |
T3 |
T4 |
T5 |
T6 |
T7 |
T8 |
T9 |
T10 |
T11 |
T12 |
T13 |
T14 |
T15 |
T16 |
T17 |
T18 |
T19 |
T20 |
T21 |
T22 |
T23 |
T24 |
T25 |
T26 |
T27 |
T28 |
T29 |
T30 |
T31 |
T32 |
T33 |
T34 |
T35 |
T36 |
T37 |
T38 |
T39 |
T40 |
T41 |
T42 |
T43 |
T44 |
T45 |
T46 |
T47 |
T48 |
T49 |
T50 |
T51 |
T52 |
T53 |
T54 |
T55 |
T56 |
T57 |
T58 |
T59 |
T60 |
T1 |
T1
|
T2
|
T3
|
T4
|
T5
|
T6
|
T7
|
T8
|
T9
|
T10
|
T11
|
T12
|
T13
|
T14
|
T15
|
T16
|
T17
|
T18
|
T19
|
T20
|
T21
|
T22
|
T23
|
T24
|
T25
|
T26
|
T27
|
T28
|
T29
|
T30
|
T31
|
T32
|
T33
|
T34
|
T35
|
T36
|
T37
|
T38
|
T39
|
T40
|
T41
|
T42
|
T43
|
T44
|
T45
|
T46
|
T47
|
T48
|
T49
|
T50
|
T51
|
T52
|
T53
|
T54
|
T55
|
T56
|
T57
|
T58
|
T59
|
T60
|
T2 |
T2
|
T5
|
T59
|
T58
|
T1
|
T7
|
T8
|
T6
|
T10
|
T11
|
T9
|
T13
|
T14
|
T12
|
T16
|
T17
|
T15
|
T19
|
T20
|
T18
|
T22
|
T23
|
T21
|
T25
|
T26
|
T24
|
T28
|
T29
|
T27
|
T31
|
T32
|
T30
|
T34
|
T35
|
T33
|
T37
|
T38
|
T36
|
T40
|
T41
|
T39
|
T43
|
T44
|
T42
|
T46
|
T47
|
T45
|
T49
|
T50
|
T48
|
T52
|
T53
|
T51
|
T4
|
T56
|
T57
|
T55
|
T54
|
T60
|
T3
|
T3 |
T3
|
T10
|
T11
|
T52
|
T6
|
T59
|
T2
|
T9
|
T60
|
T7
|
T1
|
T33
|
T19
|
T15
|
T34
|
T13
|
T18
|
T35
|
T16
|
T12
|
T31
|
T28
|
T24
|
T32
|
T22
|
T27
|
T30
|
T25
|
T21
|
T26
|
T29
|
T23
|
T20
|
T14
|
T17
|
T46
|
T43
|
T39
|
T47
|
T37
|
T42
|
T45
|
T40
|
T36
|
T41
|
T44
|
T38
|
T56
|
T4
|
T51
|
T57
|
T49
|
T54
|
T55
|
T53
|
T58
|
T50
|
T48
|
T5
|
T8
|
T4 |
T4
|
T50
|
T31
|
T29
|
T55
|
T47
|
T40
|
T44
|
T18
|
T15
|
T12
|
T52
|
T58
|
T57
|
T37
|
T41
|
T46
|
T27
|
T24
|
T21
|
T49
|
T53
|
T56
|
T42
|
T39
|
T36
|
T9
|
T6
|
T1
|
T17
|
T33
|
T13
|
T3
|
T2
|
T8
|
T60
|
T10
|
T5
|
T54
|
T51
|
T48
|
T19
|
T14
|
T35
|
T23
|
T30
|
T28
|
T16
|
T20
|
T34
|
T7
|
T11
|
T59
|
T25
|
T38
|
T45
|
T43
|
T32
|
T22
|
T26
|
T5 |
T5
|
T1
|
T60
|
T54
|
T2
|
T8
|
T6
|
T7
|
T11
|
T9
|
T10
|
T14
|
T12
|
T13
|
T17
|
T15
|
T16
|
T20
|
T18
|
T19
|
T23
|
T21
|
T22
|
T26
|
T24
|
T25
|
T29
|
T27
|
T28
|
T32
|
T30
|
T31
|
T35
|
T33
|
T34
|
T38
|
T36
|
T37
|
T41
|
T39
|
T40
|
T44
|
T42
|
T43
|
T47
|
T45
|
T46
|
T50
|
T48
|
T49
|
T53
|
T51
|
T52
|
T58
|
T57
|
T55
|
T56
|
T4
|
T3
|
T59
|
T6 |
T6
|
T3
|
T8
|
T55
|
T10
|
T9
|
T59
|
T2
|
T1
|
T60
|
T7
|
T15
|
T33
|
T19
|
T18
|
T34
|
T13
|
T12
|
T35
|
T16
|
T24
|
T31
|
T28
|
T27
|
T32
|
T22
|
T21
|
T30
|
T25
|
T23
|
T26
|
T29
|
T17
|
T20
|
T14
|
T39
|
T46
|
T43
|
T42
|
T47
|
T37
|
T36
|
T45
|
T40
|
T38
|
T41
|
T44
|
T51
|
T56
|
T4
|
T54
|
T57
|
T49
|
T48
|
T50
|
T53
|
T58
|
T52
|
T11
|
T5
|
T7 |
T7
|
T59
|
T6
|
T56
|
T11
|
T10
|
T60
|
T5
|
T2
|
T3
|
T8
|
T16
|
T34
|
T20
|
T19
|
T35
|
T14
|
T13
|
T33
|
T17
|
T25
|
T32
|
T29
|
T28
|
T30
|
T23
|
T22
|
T31
|
T26
|
T21
|
T24
|
T27
|
T15
|
T18
|
T12
|
T40
|
T47
|
T44
|
T43
|
T45
|
T38
|
T37
|
T46
|
T41
|
T36
|
T39
|
T42
|
T52
|
T57
|
T58
|
T4
|
T55
|
T50
|
T49
|
T48
|
T51
|
T54
|
T53
|
T9
|
T1
|
T8 |
T8
|
T60
|
T7
|
T57
|
T9
|
T11
|
T3
|
T1
|
T5
|
T59
|
T6
|
T17
|
T35
|
T18
|
T20
|
T33
|
T12
|
T14
|
T34
|
T15
|
T26
|
T30
|
T27
|
T29
|
T31
|
T21
|
T23
|
T32
|
T24
|
T22
|
T25
|
T28
|
T16
|
T19
|
T13
|
T41
|
T45
|
T42
|
T44
|
T46
|
T36
|
T38
|
T47
|
T39
|
T37
|
T40
|
T43
|
T53
|
T55
|
T54
|
T58
|
T56
|
T48
|
T50
|
T49
|
T52
|
T4
|
T51
|
T10
|
T2
|
T9 |
T9
|
T8
|
T2
|
T50
|
T60
|
T1
|
T11
|
T3
|
T6
|
T5
|
T59
|
T18
|
T17
|
T35
|
T12
|
T20
|
T33
|
T15
|
T14
|
T34
|
T27
|
T26
|
T30
|
T21
|
T29
|
T31
|
T24
|
T23
|
T32
|
T28
|
T22
|
T25
|
T13
|
T16
|
T19
|
T42
|
T41
|
T45
|
T36
|
T44
|
T46
|
T39
|
T38
|
T47
|
T43
|
T37
|
T40
|
T54
|
T53
|
T55
|
T48
|
T58
|
T56
|
T51
|
T4
|
T49
|
T52
|
T57
|
T7
|
T10
|
T10 |
T10
|
T6
|
T5
|
T48
|
T3
|
T2
|
T9
|
T59
|
T7
|
T1
|
T60
|
T19
|
T15
|
T33
|
T13
|
T18
|
T34
|
T16
|
T12
|
T35
|
T28
|
T24
|
T31
|
T22
|
T27
|
T32
|
T25
|
T21
|
T30
|
T29
|
T23
|
T26
|
T14
|
T17
|
T20
|
T43
|
T39
|
T46
|
T37
|
T42
|
T47
|
T40
|
T36
|
T45
|
T44
|
T38
|
T41
|
T4
|
T51
|
T56
|
T49
|
T54
|
T57
|
T52
|
T58
|
T50
|
T53
|
T55
|
T8
|
T11
|
T11 |
T11
|
T7
|
T1
|
T49
|
T59
|
T5
|
T10
|
T60
|
T8
|
T2
|
T3
|
T20
|
T16
|
T34
|
T14
|
T19
|
T35
|
T17
|
T13
|
T33
|
T29
|
T25
|
T32
|
T23
|
T28
|
T30
|
T26
|
T22
|
T31
|
T27
|
T21
|
T24
|
T12
|
T15
|
T18
|
T44
|
T40
|
T47
|
T38
|
T43
|
T45
|
T41
|
T37
|
T46
|
T42
|
T36
|
T39
|
T58
|
T52
|
T57
|
T50
|
T4
|
T55
|
T53
|
T54
|
T48
|
T51
|
T56
|
T6
|
T9
|
T12 |
T12
|
T40
|
T4
|
T20
|
T22
|
T55
|
T15
|
T26
|
T44
|
T50
|
T31
|
T21
|
T41
|
T2
|
T57
|
T24
|
T8
|
T46
|
T58
|
T3
|
T1
|
T39
|
T13
|
T56
|
T6
|
T17
|
T36
|
T53
|
T33
|
T9
|
T49
|
T42
|
T52
|
T37
|
T27
|
T35
|
T51
|
T28
|
T5
|
T14
|
T23
|
T48
|
T10
|
T30
|
T19
|
T60
|
T54
|
T32
|
T11
|
T43
|
T34
|
T29
|
T38
|
T59
|
T25
|
T16
|
T7
|
T45
|
T47
|
T18
|
T13 |
T13
|
T41
|
T58
|
T18
|
T23
|
T56
|
T16
|
T24
|
T42
|
T48
|
T32
|
T22
|
T39
|
T5
|
T55
|
T25
|
T6
|
T47
|
T54
|
T59
|
T2
|
T40
|
T14
|
T57
|
T7
|
T15
|
T37
|
T51
|
T34
|
T10
|
T50
|
T43
|
T53
|
T38
|
T28
|
T33
|
T52
|
T29
|
T1
|
T12
|
T21
|
T49
|
T11
|
T31
|
T20
|
T3
|
T4
|
T30
|
T9
|
T44
|
T35
|
T27
|
T36
|
T60
|
T26
|
T17
|
T8
|
T46
|
T45
|
T19
|
T14 |
T14
|
T39
|
T54
|
T19
|
T21
|
T57
|
T17
|
T25
|
T43
|
T49
|
T30
|
T23
|
T40
|
T1
|
T56
|
T26
|
T7
|
T45
|
T4
|
T60
|
T5
|
T41
|
T12
|
T55
|
T8
|
T16
|
T38
|
T52
|
T35
|
T11
|
T48
|
T44
|
T51
|
T36
|
T29
|
T34
|
T53
|
T27
|
T2
|
T13
|
T22
|
T50
|
T9
|
T32
|
T18
|
T59
|
T58
|
T31
|
T10
|
T42
|
T33
|
T28
|
T37
|
T3
|
T24
|
T15
|
T6
|
T47
|
T46
|
T20
|
T15 |
T15
|
T47
|
T55
|
T16
|
T31
|
T50
|
T18
|
T22
|
T40
|
T4
|
T26
|
T24
|
T37
|
T3
|
T58
|
T27
|
T2
|
T41
|
T52
|
T8
|
T6
|
T42
|
T33
|
T53
|
T9
|
T13
|
T39
|
T49
|
T17
|
T1
|
T56
|
T36
|
T57
|
T46
|
T21
|
T14
|
T54
|
T30
|
T10
|
T19
|
T28
|
T51
|
T60
|
T23
|
T35
|
T5
|
T48
|
T29
|
T7
|
T45
|
T20
|
T25
|
T43
|
T11
|
T32
|
T34
|
T59
|
T38
|
T44
|
T12
|
T16 |
T16
|
T45
|
T56
|
T17
|
T32
|
T48
|
T19
|
T23
|
T41
|
T58
|
T24
|
T25
|
T38
|
T59
|
T54
|
T28
|
T5
|
T39
|
T53
|
T6
|
T7
|
T43
|
T34
|
T51
|
T10
|
T14
|
T40
|
T50
|
T15
|
T2
|
T57
|
T37
|
T55
|
T47
|
T22
|
T12
|
T4
|
T31
|
T11
|
T20
|
T29
|
T52
|
T3
|
T21
|
T33
|
T1
|
T49
|
T27
|
T8
|
T46
|
T18
|
T26
|
T44
|
T9
|
T30
|
T35
|
T60
|
T36
|
T42
|
T13
|
T17 |
T17
|
T46
|
T57
|
T15
|
T30
|
T49
|
T20
|
T21
|
T39
|
T54
|
T25
|
T26
|
T36
|
T60
|
T4
|
T29
|
T1
|
T40
|
T51
|
T7
|
T8
|
T44
|
T35
|
T52
|
T11
|
T12
|
T41
|
T48
|
T16
|
T5
|
T55
|
T38
|
T56
|
T45
|
T23
|
T13
|
T58
|
T32
|
T9
|
T18
|
T27
|
T53
|
T59
|
T22
|
T34
|
T2
|
T50
|
T28
|
T6
|
T47
|
T19
|
T24
|
T42
|
T10
|
T31
|
T33
|
T3
|
T37
|
T43
|
T14
|
T18 |
T18
|
T44
|
T50
|
T34
|
T26
|
T4
|
T12
|
T31
|
T47
|
T55
|
T22
|
T27
|
T46
|
T8
|
T52
|
T21
|
T3
|
T37
|
T57
|
T2
|
T9
|
T36
|
T17
|
T49
|
T1
|
T33
|
T42
|
T56
|
T13
|
T6
|
T53
|
T39
|
T58
|
T41
|
T24
|
T19
|
T48
|
T23
|
T60
|
T35
|
T30
|
T54
|
T5
|
T28
|
T14
|
T10
|
T51
|
T25
|
T59
|
T38
|
T16
|
T32
|
T45
|
T7
|
T29
|
T20
|
T11
|
T43
|
T40
|
T15
|
T19 |
T19
|
T42
|
T48
|
T35
|
T24
|
T58
|
T13
|
T32
|
T45
|
T56
|
T23
|
T28
|
T47
|
T6
|
T53
|
T22
|
T59
|
T38
|
T55
|
T5
|
T10
|
T37
|
T15
|
T50
|
T2
|
T34
|
T43
|
T57
|
T14
|
T7
|
T51
|
T40
|
T54
|
T39
|
T25
|
T20
|
T49
|
T21
|
T3
|
T33
|
T31
|
T4
|
T1
|
T29
|
T12
|
T11
|
T52
|
T26
|
T60
|
T36
|
T17
|
T30
|
T46
|
T8
|
T27
|
T18
|
T9
|
T44
|
T41
|
T16
|
T20 |
T20
|
T43
|
T49
|
T33
|
T25
|
T54
|
T14
|
T30
|
T46
|
T57
|
T21
|
T29
|
T45
|
T7
|
T51
|
T23
|
T60
|
T36
|
T56
|
T1
|
T11
|
T38
|
T16
|
T48
|
T5
|
T35
|
T44
|
T55
|
T12
|
T8
|
T52
|
T41
|
T4
|
T40
|
T26
|
T18
|
T50
|
T22
|
T59
|
T34
|
T32
|
T58
|
T2
|
T27
|
T13
|
T9
|
T53
|
T24
|
T3
|
T37
|
T15
|
T31
|
T47
|
T6
|
T28
|
T19
|
T10
|
T42
|
T39
|
T17
|
T21 |
T21
|
T14
|
T20
|
T3
|
T39
|
T25
|
T57
|
T17
|
T30
|
T43
|
T49
|
T1
|
T23
|
T40
|
T7
|
T56
|
T26
|
T60
|
T45
|
T4
|
T12
|
T5
|
T41
|
T16
|
T55
|
T8
|
T35
|
T38
|
T52
|
T44
|
T11
|
T48
|
T29
|
T51
|
T36
|
T27
|
T34
|
T53
|
T22
|
T2
|
T13
|
T32
|
T50
|
T9
|
T58
|
T18
|
T59
|
T42
|
T31
|
T10
|
T37
|
T33
|
T28
|
T47
|
T6
|
T24
|
T15
|
T19
|
T54
|
T46
|
T22 |
T22
|
T12
|
T18
|
T59
|
T40
|
T26
|
T55
|
T15
|
T31
|
T44
|
T50
|
T2
|
T21
|
T41
|
T8
|
T57
|
T24
|
T3
|
T46
|
T58
|
T13
|
T1
|
T39
|
T17
|
T56
|
T6
|
T33
|
T36
|
T53
|
T42
|
T9
|
T49
|
T27
|
T52
|
T37
|
T28
|
T35
|
T51
|
T23
|
T5
|
T14
|
T30
|
T48
|
T10
|
T54
|
T19
|
T60
|
T43
|
T32
|
T11
|
T38
|
T34
|
T29
|
T45
|
T7
|
T25
|
T16
|
T20
|
T4
|
T47
|
T23 |
T23
|
T13
|
T19
|
T60
|
T41
|
T24
|
T56
|
T16
|
T32
|
T42
|
T48
|
T5
|
T22
|
T39
|
T6
|
T55
|
T25
|
T59
|
T47
|
T54
|
T14
|
T2
|
T40
|
T15
|
T57
|
T7
|
T34
|
T37
|
T51
|
T43
|
T10
|
T50
|
T28
|
T53
|
T38
|
T29
|
T33
|
T52
|
T21
|
T1
|
T12
|
T31
|
T49
|
T11
|
T4
|
T20
|
T3
|
T44
|
T30
|
T9
|
T36
|
T35
|
T27
|
T46
|
T8
|
T26
|
T17
|
T18
|
T58
|
T45
|
T24 |
T24
|
T19
|
T16
|
T8
|
T42
|
T32
|
T58
|
T13
|
T23
|
T45
|
T56
|
T6
|
T28
|
T47
|
T59
|
T53
|
T22
|
T5
|
T38
|
T55
|
T15
|
T10
|
T37
|
T34
|
T50
|
T2
|
T14
|
T43
|
T57
|
T40
|
T7
|
T51
|
T25
|
T54
|
T39
|
T21
|
T20
|
T49
|
T31
|
T3
|
T33
|
T29
|
T4
|
T1
|
T52
|
T12
|
T11
|
T36
|
T26
|
T60
|
T46
|
T17
|
T30
|
T44
|
T9
|
T27
|
T18
|
T35
|
T48
|
T41
|
T25 |
T25
|
T20
|
T17
|
T6
|
T43
|
T30
|
T54
|
T14
|
T21
|
T46
|
T57
|
T7
|
T29
|
T45
|
T60
|
T51
|
T23
|
T1
|
T36
|
T56
|
T16
|
T11
|
T38
|
T35
|
T48
|
T5
|
T12
|
T44
|
T55
|
T41
|
T8
|
T52
|
T26
|
T4
|
T40
|
T22
|
T18
|
T50
|
T32
|
T59
|
T34
|
T27
|
T58
|
T2
|
T53
|
T13
|
T9
|
T37
|
T24
|
T3
|
T47
|
T15
|
T31
|
T42
|
T10
|
T28
|
T19
|
T33
|
T49
|
T39
|
T26 |
T26
|
T18
|
T15
|
T7
|
T44
|
T31
|
T4
|
T12
|
T22
|
T47
|
T55
|
T8
|
T27
|
T46
|
T3
|
T52
|
T21
|
T2
|
T37
|
T57
|
T17
|
T9
|
T36
|
T33
|
T49
|
T1
|
T13
|
T42
|
T56
|
T39
|
T6
|
T53
|
T24
|
T58
|
T41
|
T23
|
T19
|
T48
|
T30
|
T60
|
T35
|
T28
|
T54
|
T5
|
T51
|
T14
|
T10
|
T38
|
T25
|
T59
|
T45
|
T16
|
T32
|
T43
|
T11
|
T29
|
T20
|
T34
|
T50
|
T40
|
T27 |
T27
|
T35
|
T34
|
T2
|
T36
|
T29
|
T52
|
T33
|
T28
|
T38
|
T53
|
T9
|
T30
|
T44
|
T11
|
T49
|
T31
|
T10
|
T43
|
T50
|
T18
|
T60
|
T46
|
T20
|
T4
|
T3
|
T19
|
T45
|
T58
|
T47
|
T59
|
T54
|
T32
|
T48
|
T42
|
T24
|
T16
|
T56
|
T26
|
T8
|
T17
|
T25
|
T55
|
T6
|
T57
|
T15
|
T7
|
T39
|
T22
|
T5
|
T41
|
T13
|
T23
|
T40
|
T1
|
T21
|
T12
|
T14
|
T51
|
T37
|
T28 |
T28
|
T33
|
T35
|
T5
|
T37
|
T27
|
T53
|
T34
|
T29
|
T36
|
T51
|
T10
|
T31
|
T42
|
T9
|
T50
|
T32
|
T11
|
T44
|
T48
|
T19
|
T3
|
T47
|
T18
|
T58
|
T59
|
T20
|
T46
|
T54
|
T45
|
T60
|
T4
|
T30
|
T49
|
T43
|
T25
|
T17
|
T57
|
T24
|
T6
|
T15
|
T26
|
T56
|
T7
|
T55
|
T16
|
T8
|
T40
|
T23
|
T1
|
T39
|
T14
|
T21
|
T41
|
T2
|
T22
|
T13
|
T12
|
T52
|
T38
|
T29 |
T29
|
T34
|
T33
|
T1
|
T38
|
T28
|
T51
|
T35
|
T27
|
T37
|
T52
|
T11
|
T32
|
T43
|
T10
|
T48
|
T30
|
T9
|
T42
|
T49
|
T20
|
T59
|
T45
|
T19
|
T54
|
T60
|
T18
|
T47
|
T4
|
T46
|
T3
|
T58
|
T31
|
T50
|
T44
|
T26
|
T15
|
T55
|
T25
|
T7
|
T16
|
T24
|
T57
|
T8
|
T56
|
T17
|
T6
|
T41
|
T21
|
T2
|
T40
|
T12
|
T22
|
T39
|
T5
|
T23
|
T14
|
T13
|
T53
|
T36
|
T30 |
T30
|
T17
|
T14
|
T10
|
T46
|
T21
|
T49
|
T20
|
T25
|
T39
|
T54
|
T60
|
T26
|
T36
|
T1
|
T4
|
T29
|
T7
|
T40
|
T51
|
T35
|
T8
|
T44
|
T12
|
T52
|
T11
|
T16
|
T41
|
T48
|
T38
|
T5
|
T55
|
T23
|
T56
|
T45
|
T32
|
T13
|
T58
|
T27
|
T9
|
T18
|
T22
|
T53
|
T59
|
T50
|
T34
|
T2
|
T47
|
T28
|
T6
|
T42
|
T19
|
T24
|
T37
|
T3
|
T31
|
T33
|
T15
|
T57
|
T43
|
T31 |
T31
|
T15
|
T12
|
T11
|
T47
|
T22
|
T50
|
T18
|
T26
|
T40
|
T4
|
T3
|
T24
|
T37
|
T2
|
T58
|
T27
|
T8
|
T41
|
T52
|
T33
|
T6
|
T42
|
T13
|
T53
|
T9
|
T17
|
T39
|
T49
|
T36
|
T1
|
T56
|
T21
|
T57
|
T46
|
T30
|
T14
|
T54
|
T28
|
T10
|
T19
|
T23
|
T51
|
T60
|
T48
|
T35
|
T5
|
T45
|
T29
|
T7
|
T43
|
T20
|
T25
|
T38
|
T59
|
T32
|
T34
|
T16
|
T55
|
T44
|
T32 |
T32
|
T16
|
T13
|
T9
|
T45
|
T23
|
T48
|
T19
|
T24
|
T41
|
T58
|
T59
|
T25
|
T38
|
T5
|
T54
|
T28
|
T6
|
T39
|
T53
|
T34
|
T7
|
T43
|
T14
|
T51
|
T10
|
T15
|
T40
|
T50
|
T37
|
T2
|
T57
|
T22
|
T55
|
T47
|
T31
|
T12
|
T4
|
T29
|
T11
|
T20
|
T21
|
T52
|
T3
|
T49
|
T33
|
T1
|
T46
|
T27
|
T8
|
T44
|
T18
|
T26
|
T36
|
T60
|
T30
|
T35
|
T17
|
T56
|
T42
|
T33 |
T33
|
T37
|
T52
|
T12
|
T28
|
T53
|
T34
|
T27
|
T36
|
T51
|
T29
|
T31
|
T42
|
T10
|
T50
|
T32
|
T9
|
T44
|
T48
|
T11
|
T3
|
T47
|
T19
|
T58
|
T59
|
T18
|
T46
|
T54
|
T20
|
T60
|
T4
|
T45
|
T49
|
T43
|
T30
|
T17
|
T57
|
T25
|
T6
|
T15
|
T24
|
T56
|
T7
|
T26
|
T16
|
T8
|
T55
|
T23
|
T1
|
T40
|
T14
|
T21
|
T39
|
T5
|
T22
|
T13
|
T2
|
T41
|
T38
|
T35
|
T34 |
T34
|
T38
|
T53
|
T13
|
T29
|
T51
|
T35
|
T28
|
T37
|
T52
|
T27
|
T32
|
T43
|
T11
|
T48
|
T30
|
T10
|
T42
|
T49
|
T9
|
T59
|
T45
|
T20
|
T54
|
T60
|
T19
|
T47
|
T4
|
T18
|
T3
|
T58
|
T46
|
T50
|
T44
|
T31
|
T15
|
T55
|
T26
|
T7
|
T16
|
T25
|
T57
|
T8
|
T24
|
T17
|
T6
|
T56
|
T21
|
T2
|
T41
|
T12
|
T22
|
T40
|
T1
|
T23
|
T14
|
T5
|
T39
|
T36
|
T33
|
T35 |
T35
|
T36
|
T51
|
T14
|
T27
|
T52
|
T33
|
T29
|
T38
|
T53
|
T28
|
T30
|
T44
|
T9
|
T49
|
T31
|
T11
|
T43
|
T50
|
T10
|
T60
|
T46
|
T18
|
T4
|
T3
|
T20
|
T45
|
T58
|
T19
|
T59
|
T54
|
T47
|
T48
|
T42
|
T32
|
T16
|
T56
|
T24
|
T8
|
T17
|
T26
|
T55
|
T6
|
T25
|
T15
|
T7
|
T57
|
T22
|
T5
|
T39
|
T13
|
T23
|
T41
|
T2
|
T21
|
T12
|
T1
|
T40
|
T37
|
T34
|
T36 |
T36
|
T27
|
T37
|
T40
|
T35
|
T33
|
T29
|
T52
|
T53
|
T28
|
T38
|
T44
|
T9
|
T30
|
T31
|
T11
|
T49
|
T50
|
T10
|
T43
|
T46
|
T18
|
T60
|
T3
|
T20
|
T4
|
T58
|
T19
|
T45
|
T54
|
T47
|
T59
|
T42
|
T32
|
T48
|
T56
|
T24
|
T16
|
T17
|
T26
|
T8
|
T6
|
T25
|
T55
|
T7
|
T57
|
T15
|
T5
|
T39
|
T22
|
T23
|
T41
|
T13
|
T14
|
T12
|
T1
|
T21
|
T2
|
T34
|
T51
|
T37 |
T37
|
T28
|
T38
|
T41
|
T33
|
T34
|
T27
|
T53
|
T51
|
T29
|
T36
|
T42
|
T10
|
T31
|
T32
|
T9
|
T50
|
T48
|
T11
|
T44
|
T47
|
T19
|
T3
|
T59
|
T18
|
T58
|
T54
|
T20
|
T46
|
T4
|
T45
|
T60
|
T43
|
T30
|
T49
|
T57
|
T25
|
T17
|
T15
|
T24
|
T6
|
T7
|
T26
|
T56
|
T8
|
T55
|
T16
|
T1
|
T40
|
T23
|
T21
|
T39
|
T14
|
T12
|
T13
|
T2
|
T22
|
T5
|
T35
|
T52
|
T38 |
T38
|
T29
|
T36
|
T39
|
T34
|
T35
|
T28
|
T51
|
T52
|
T27
|
T37
|
T43
|
T11
|
T32
|
T30
|
T10
|
T48
|
T49
|
T9
|
T42
|
T45
|
T20
|
T59
|
T60
|
T19
|
T54
|
T4
|
T18
|
T47
|
T58
|
T46
|
T3
|
T44
|
T31
|
T50
|
T55
|
T26
|
T15
|
T16
|
T25
|
T7
|
T8
|
T24
|
T57
|
T6
|
T56
|
T17
|
T2
|
T41
|
T21
|
T22
|
T40
|
T12
|
T13
|
T14
|
T5
|
T23
|
T1
|
T33
|
T53
|
T39 |
T39
|
T21
|
T46
|
T47
|
T14
|
T17
|
T25
|
T57
|
T49
|
T30
|
T43
|
T40
|
T1
|
T23
|
T26
|
T7
|
T56
|
T4
|
T60
|
T45
|
T41
|
T12
|
T5
|
T8
|
T16
|
T55
|
T52
|
T35
|
T38
|
T48
|
T44
|
T11
|
T36
|
T29
|
T51
|
T53
|
T27
|
T34
|
T13
|
T22
|
T2
|
T9
|
T32
|
T50
|
T59
|
T58
|
T18
|
T10
|
T42
|
T31
|
T28
|
T37
|
T33
|
T19
|
T15
|
T6
|
T24
|
T3
|
T20
|
T54
|
T40 |
T40
|
T22
|
T47
|
T45
|
T12
|
T15
|
T26
|
T55
|
T50
|
T31
|
T44
|
T41
|
T2
|
T21
|
T24
|
T8
|
T57
|
T58
|
T3
|
T46
|
T39
|
T13
|
T1
|
T6
|
T17
|
T56
|
T53
|
T33
|
T36
|
T49
|
T42
|
T9
|
T37
|
T27
|
T52
|
T51
|
T28
|
T35
|
T14
|
T23
|
T5
|
T10
|
T30
|
T48
|
T60
|
T54
|
T19
|
T11
|
T43
|
T32
|
T29
|
T38
|
T34
|
T20
|
T16
|
T7
|
T25
|
T59
|
T18
|
T4
|
T41 |
T41
|
T23
|
T45
|
T46
|
T13
|
T16
|
T24
|
T56
|
T48
|
T32
|
T42
|
T39
|
T5
|
T22
|
T25
|
T6
|
T55
|
T54
|
T59
|
T47
|
T40
|
T14
|
T2
|
T7
|
T15
|
T57
|
T51
|
T34
|
T37
|
T50
|
T43
|
T10
|
T38
|
T28
|
T53
|
T52
|
T29
|
T33
|
T12
|
T21
|
T1
|
T11
|
T31
|
T49
|
T3
|
T4
|
T20
|
T9
|
T44
|
T30
|
T27
|
T36
|
T35
|
T18
|
T17
|
T8
|
T26
|
T60
|
T19
|
T58
|
T42 |
T42
|
T24
|
T41
|
T44
|
T19
|
T13
|
T32
|
T58
|
T56
|
T23
|
T45
|
T47
|
T6
|
T28
|
T22
|
T59
|
T53
|
T55
|
T5
|
T38
|
T37
|
T15
|
T10
|
T2
|
T34
|
T50
|
T57
|
T14
|
T43
|
T51
|
T40
|
T7
|
T39
|
T25
|
T54
|
T49
|
T21
|
T20
|
T33
|
T31
|
T3
|
T1
|
T29
|
T4
|
T11
|
T52
|
T12
|
T60
|
T36
|
T26
|
T30
|
T46
|
T17
|
T35
|
T18
|
T9
|
T27
|
T8
|
T16
|
T48
|
T43 |
T43
|
T25
|
T39
|
T42
|
T20
|
T14
|
T30
|
T54
|
T57
|
T21
|
T46
|
T45
|
T7
|
T29
|
T23
|
T60
|
T51
|
T56
|
T1
|
T36
|
T38
|
T16
|
T11
|
T5
|
T35
|
T48
|
T55
|
T12
|
T44
|
T52
|
T41
|
T8
|
T40
|
T26
|
T4
|
T50
|
T22
|
T18
|
T34
|
T32
|
T59
|
T2
|
T27
|
T58
|
T9
|
T53
|
T13
|
T3
|
T37
|
T24
|
T31
|
T47
|
T15
|
T33
|
T19
|
T10
|
T28
|
T6
|
T17
|
T49
|
T44 |
T44
|
T26
|
T40
|
T43
|
T18
|
T12
|
T31
|
T4
|
T55
|
T22
|
T47
|
T46
|
T8
|
T27
|
T21
|
T3
|
T52
|
T57
|
T2
|
T37
|
T36
|
T17
|
T9
|
T1
|
T33
|
T49
|
T56
|
T13
|
T42
|
T53
|
T39
|
T6
|
T41
|
T24
|
T58
|
T48
|
T23
|
T19
|
T35
|
T30
|
T60
|
T5
|
T28
|
T54
|
T10
|
T51
|
T14
|
T59
|
T38
|
T25
|
T32
|
T45
|
T16
|
T34
|
T20
|
T11
|
T29
|
T7
|
T15
|
T50
|
T45 |
T45
|
T32
|
T42
|
T36
|
T16
|
T19
|
T23
|
T48
|
T58
|
T24
|
T41
|
T38
|
T59
|
T25
|
T28
|
T5
|
T54
|
T53
|
T6
|
T39
|
T43
|
T34
|
T7
|
T10
|
T14
|
T51
|
T50
|
T15
|
T40
|
T57
|
T37
|
T2
|
T47
|
T22
|
T55
|
T4
|
T31
|
T12
|
T20
|
T29
|
T11
|
T3
|
T21
|
T52
|
T1
|
T49
|
T33
|
T8
|
T46
|
T27
|
T26
|
T44
|
T18
|
T17
|
T35
|
T60
|
T30
|
T9
|
T13
|
T56
|
T46 |
T46
|
T30
|
T43
|
T37
|
T17
|
T20
|
T21
|
T49
|
T54
|
T25
|
T39
|
T36
|
T60
|
T26
|
T29
|
T1
|
T4
|
T51
|
T7
|
T40
|
T44
|
T35
|
T8
|
T11
|
T12
|
T52
|
T48
|
T16
|
T41
|
T55
|
T38
|
T5
|
T45
|
T23
|
T56
|
T58
|
T32
|
T13
|
T18
|
T27
|
T9
|
T59
|
T22
|
T53
|
T2
|
T50
|
T34
|
T6
|
T47
|
T28
|
T24
|
T42
|
T19
|
T15
|
T33
|
T3
|
T31
|
T10
|
T14
|
T57
|
T47 |
T47
|
T31
|
T44
|
T38
|
T15
|
T18
|
T22
|
T50
|
T4
|
T26
|
T40
|
T37
|
T3
|
T24
|
T27
|
T2
|
T58
|
T52
|
T8
|
T41
|
T42
|
T33
|
T6
|
T9
|
T13
|
T53
|
T49
|
T17
|
T39
|
T56
|
T36
|
T1
|
T46
|
T21
|
T57
|
T54
|
T30
|
T14
|
T19
|
T28
|
T10
|
T60
|
T23
|
T51
|
T5
|
T48
|
T35
|
T7
|
T45
|
T29
|
T25
|
T43
|
T20
|
T16
|
T34
|
T59
|
T32
|
T11
|
T12
|
T55
|
T48 |
T48
|
T56
|
T23
|
T30
|
T58
|
T41
|
T42
|
T45
|
T16
|
T13
|
T19
|
T54
|
T55
|
T53
|
T39
|
T47
|
T38
|
T25
|
T22
|
T28
|
T51
|
T57
|
T50
|
T40
|
T37
|
T43
|
T7
|
T2
|
T10
|
T34
|
T14
|
T15
|
T5
|
T6
|
T59
|
T11
|
T1
|
T3
|
T52
|
T49
|
T4
|
T12
|
T33
|
T20
|
T31
|
T29
|
T21
|
T18
|
T35
|
T17
|
T9
|
T60
|
T8
|
T27
|
T46
|
T44
|
T36
|
T26
|
T24
|
T32
|
T49 |
T49
|
T57
|
T21
|
T31
|
T54
|
T39
|
T43
|
T46
|
T17
|
T14
|
T20
|
T4
|
T56
|
T51
|
T40
|
T45
|
T36
|
T26
|
T23
|
T29
|
T52
|
T55
|
T48
|
T41
|
T38
|
T44
|
T8
|
T5
|
T11
|
T35
|
T12
|
T16
|
T1
|
T7
|
T60
|
T9
|
T2
|
T59
|
T53
|
T50
|
T58
|
T13
|
T34
|
T18
|
T32
|
T27
|
T22
|
T19
|
T33
|
T15
|
T10
|
T3
|
T6
|
T28
|
T47
|
T42
|
T37
|
T24
|
T25
|
T30
|
T50 |
T50
|
T55
|
T22
|
T32
|
T4
|
T40
|
T44
|
T47
|
T15
|
T12
|
T18
|
T58
|
T57
|
T52
|
T41
|
T46
|
T37
|
T24
|
T21
|
T27
|
T53
|
T56
|
T49
|
T39
|
T36
|
T42
|
T6
|
T1
|
T9
|
T33
|
T13
|
T17
|
T2
|
T8
|
T3
|
T10
|
T5
|
T60
|
T51
|
T48
|
T54
|
T14
|
T35
|
T19
|
T30
|
T28
|
T23
|
T20
|
T34
|
T16
|
T11
|
T59
|
T7
|
T29
|
T45
|
T43
|
T38
|
T25
|
T26
|
T31
|
T51 |
T51
|
T53
|
T28
|
T23
|
T52
|
T37
|
T36
|
T38
|
T34
|
T33
|
T35
|
T48
|
T50
|
T49
|
T42
|
T44
|
T43
|
T32
|
T31
|
T30
|
T54
|
T58
|
T4
|
T47
|
T46
|
T45
|
T59
|
T3
|
T60
|
T20
|
T19
|
T18
|
T10
|
T9
|
T11
|
T7
|
T6
|
T8
|
T57
|
T56
|
T55
|
T15
|
T17
|
T16
|
T26
|
T25
|
T24
|
T12
|
T14
|
T13
|
T1
|
T5
|
T2
|
T21
|
T41
|
T40
|
T39
|
T22
|
T27
|
T29
|
T52 |
T52
|
T51
|
T29
|
T21
|
T53
|
T38
|
T37
|
T36
|
T35
|
T34
|
T33
|
T49
|
T48
|
T50
|
T43
|
T42
|
T44
|
T30
|
T32
|
T31
|
T4
|
T54
|
T58
|
T45
|
T47
|
T46
|
T60
|
T59
|
T3
|
T18
|
T20
|
T19
|
T11
|
T10
|
T9
|
T8
|
T7
|
T6
|
T55
|
T57
|
T56
|
T16
|
T15
|
T17
|
T24
|
T26
|
T25
|
T13
|
T12
|
T14
|
T2
|
T1
|
T5
|
T22
|
T39
|
T41
|
T40
|
T23
|
T28
|
T27
|
T53 |
T53
|
T52
|
T27
|
T22
|
T51
|
T36
|
T38
|
T37
|
T33
|
T35
|
T34
|
T50
|
T49
|
T48
|
T44
|
T43
|
T42
|
T31
|
T30
|
T32
|
T58
|
T4
|
T54
|
T46
|
T45
|
T47
|
T3
|
T60
|
T59
|
T19
|
T18
|
T20
|
T9
|
T11
|
T10
|
T6
|
T8
|
T7
|
T56
|
T55
|
T57
|
T17
|
T16
|
T15
|
T25
|
T24
|
T26
|
T14
|
T13
|
T12
|
T5
|
T2
|
T1
|
T23
|
T40
|
T39
|
T41
|
T21
|
T29
|
T28
|
T54 |
T54
|
T49
|
T30
|
T28
|
T57
|
T46
|
T39
|
T43
|
T20
|
T17
|
T14
|
T51
|
T4
|
T56
|
T36
|
T40
|
T45
|
T29
|
T26
|
T23
|
T48
|
T52
|
T55
|
T44
|
T41
|
T38
|
T11
|
T8
|
T5
|
T16
|
T35
|
T12
|
T60
|
T1
|
T7
|
T59
|
T9
|
T2
|
T58
|
T53
|
T50
|
T18
|
T13
|
T34
|
T22
|
T32
|
T27
|
T15
|
T19
|
T33
|
T6
|
T10
|
T3
|
T24
|
T37
|
T47
|
T42
|
T31
|
T21
|
T25
|
T55 |
T55
|
T4
|
T26
|
T25
|
T50
|
T44
|
T47
|
T40
|
T12
|
T18
|
T15
|
T57
|
T52
|
T58
|
T46
|
T37
|
T41
|
T21
|
T27
|
T24
|
T56
|
T49
|
T53
|
T36
|
T42
|
T39
|
T1
|
T9
|
T6
|
T13
|
T17
|
T33
|
T8
|
T3
|
T2
|
T5
|
T60
|
T10
|
T48
|
T54
|
T51
|
T35
|
T19
|
T14
|
T28
|
T23
|
T30
|
T34
|
T16
|
T20
|
T59
|
T7
|
T11
|
T32
|
T43
|
T38
|
T45
|
T29
|
T31
|
T22
|
T56 |
T56
|
T58
|
T24
|
T26
|
T48
|
T42
|
T45
|
T41
|
T13
|
T19
|
T16
|
T55
|
T53
|
T54
|
T47
|
T38
|
T39
|
T22
|
T28
|
T25
|
T57
|
T50
|
T51
|
T37
|
T43
|
T40
|
T2
|
T10
|
T7
|
T14
|
T15
|
T34
|
T6
|
T59
|
T5
|
T1
|
T3
|
T11
|
T49
|
T4
|
T52
|
T33
|
T20
|
T12
|
T29
|
T21
|
T31
|
T35
|
T17
|
T18
|
T60
|
T8
|
T9
|
T30
|
T44
|
T36
|
T46
|
T27
|
T32
|
T23
|
T57 |
T57
|
T54
|
T25
|
T24
|
T49
|
T43
|
T46
|
T39
|
T14
|
T20
|
T17
|
T56
|
T51
|
T4
|
T45
|
T36
|
T40
|
T23
|
T29
|
T26
|
T55
|
T48
|
T52
|
T38
|
T44
|
T41
|
T5
|
T11
|
T8
|
T12
|
T16
|
T35
|
T7
|
T60
|
T1
|
T2
|
T59
|
T9
|
T50
|
T58
|
T53
|
T34
|
T18
|
T13
|
T27
|
T22
|
T32
|
T33
|
T15
|
T19
|
T3
|
T6
|
T10
|
T31
|
T42
|
T37
|
T47
|
T28
|
T30
|
T21
|
T58 |
T58
|
T48
|
T32
|
T27
|
T56
|
T45
|
T41
|
T42
|
T19
|
T16
|
T13
|
T53
|
T54
|
T55
|
T38
|
T39
|
T47
|
T28
|
T25
|
T22
|
T50
|
T51
|
T57
|
T43
|
T40
|
T37
|
T10
|
T7
|
T2
|
T15
|
T34
|
T14
|
T59
|
T5
|
T6
|
T3
|
T11
|
T1
|
T4
|
T52
|
T49
|
T20
|
T12
|
T33
|
T21
|
T31
|
T29
|
T17
|
T18
|
T35
|
T8
|
T9
|
T60
|
T26
|
T36
|
T46
|
T44
|
T30
|
T23
|
T24
|
T59 |
T59
|
T11
|
T9
|
T53
|
T7
|
T60
|
T5
|
T10
|
T3
|
T8
|
T2
|
T34
|
T20
|
T16
|
T35
|
T14
|
T19
|
T33
|
T17
|
T13
|
T32
|
T29
|
T25
|
T30
|
T23
|
T28
|
T31
|
T26
|
T22
|
T24
|
T27
|
T21
|
T18
|
T12
|
T15
|
T47
|
T44
|
T40
|
T45
|
T38
|
T43
|
T46
|
T41
|
T37
|
T39
|
T42
|
T36
|
T57
|
T58
|
T52
|
T55
|
T50
|
T4
|
T56
|
T51
|
T54
|
T48
|
T49
|
T1
|
T6
|
T60 |
T60
|
T9
|
T10
|
T51
|
T8
|
T3
|
T1
|
T11
|
T59
|
T6
|
T5
|
T35
|
T18
|
T17
|
T33
|
T12
|
T20
|
T34
|
T15
|
T14
|
T30
|
T27
|
T26
|
T31
|
T21
|
T29
|
T32
|
T24
|
T23
|
T25
|
T28
|
T22
|
T19
|
T13
|
T16
|
T45
|
T42
|
T41
|
T46
|
T36
|
T44
|
T47
|
T39
|
T38
|
T40
|
T43
|
T37
|
T55
|
T54
|
T53
|
T56
|
T48
|
T58
|
T57
|
T52
|
T4
|
T49
|
T50
|
T2
|
T7
|