5-cell

Initial vertex: ${{ v} _1} = {\left[\begin{array}{c} {\frac{1}{4}} {\sqrt{15}}\\ 0\\ 0\\ -{\frac{1}{4}}\end{array}\right]}$

Transforms for vertex generation:

$ { \tilde{T}} _i \in \left\{ \left[\begin{array}{cccc} 1& 0& 0& 0\\ 0& 1& 0& 0\\ 0& 0& 1& 0\\ 0& 0& 0& 1\end{array}\right], \left[\begin{array}{cccc} -{\frac{1}{3}}& -{\frac{\sqrt{2}}{\sqrt{3}}}& -{{\frac{1}{3}} {\sqrt{2}}}& 0\\ 0& \frac{1}{2}& -{{\frac{1}{2}} {\sqrt{3}}}& 0\\ {\frac{1}{3}} {{{2}} {{\sqrt{2}}}}& -{\frac{1}{{{2}} {{\sqrt{3}}}}}& -{\frac{1}{6}}& 0\\ 0& 0& 0& 1\end{array}\right], \left[\begin{array}{cccc} 1& 0& 0& 0\\ 0& -{\frac{1}{2}}& -{{\frac{1}{2}} {\sqrt{3}}}& 0\\ 0& {\frac{1}{2}} {\sqrt{3}}& -{\frac{1}{2}}& 0\\ 0& 0& 0& 1\end{array}\right], \left[\begin{array}{cccc} \frac{11}{12}& \frac{1}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}& -{\frac{1}{{{3}} \cdot {{2}} {{\sqrt{2}}}}}& -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}\\ -{\frac{1}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}& -{\frac{1}{2}}& -{\frac{1}{{{2}} {{\sqrt{3}}}}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}}\\ -{\frac{1}{{{3}} \cdot {{2}} {{\sqrt{2}}}}}& \frac{1}{{{2}} {{\sqrt{3}}}}& \frac{5}{6}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}\\ -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}& \frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}& -{\frac{1}{4}}\end{array}\right] \right\}$

${{{{{ T} _4}} {{{ V} _4}}} = {\left[\begin{array}{c} 0\\ 0\\ 0\\ 1\end{array}\right]}} = {{ V} _2}$
${{{{{ T} _2}} {{{ V} _1}}} = {\left[\begin{array}{c} -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}\\ 0\\ \frac{\sqrt{5}}{\sqrt{6}}\\ -{\frac{1}{4}}\end{array}\right]}} = {{ V} _3}$
${{{{{ T} _3}} {{{ V} _3}}} = {\left[\begin{array}{c} -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}\\ \frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}\\ -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}\\ -{\frac{1}{4}}\end{array}\right]}} = {{ V} _4}$
${{{{{ T} _2}} {{{ V} _2}}} = {\left[\begin{array}{c} -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}\\ -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}}\\ -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}\\ -{\frac{1}{4}}\end{array}\right]}} = {{ V} _5}$
${{{{{ T} _2}} {{{ T} _2}}} = {\left[\begin{array}{cccc} -{\frac{1}{3}}& 0& {\frac{1}{3}} {{{2}} {{\sqrt{2}}}}& 0\\ -{\frac{\sqrt{2}}{\sqrt{3}}}& \frac{1}{2}& -{\frac{1}{{{2}} {{\sqrt{3}}}}}& 0\\ -{{\frac{1}{3}} {\sqrt{2}}}& -{{\frac{1}{2}} {\sqrt{3}}}& -{\frac{1}{6}}& 0\\ 0& 0& 0& 1\end{array}\right]}} = {{ T} _5}$
${{{{{ T} _3}} {{{ T} _2}}} = {\left[\begin{array}{cccc} -{\frac{1}{3}}& -{\frac{\sqrt{2}}{\sqrt{3}}}& -{{\frac{1}{3}} {\sqrt{2}}}& 0\\ -{\frac{\sqrt{2}}{\sqrt{3}}}& 0& \frac{1}{\sqrt{3}}& 0\\ -{{\frac{1}{3}} {\sqrt{2}}}& \frac{1}{\sqrt{3}}& -{\frac{2}{3}}& 0\\ 0& 0& 0& 1\end{array}\right]}} = {{ T} _6}$
${{{{{ T} _4}} {{{ T} _2}}} = {\left[\begin{array}{cccc} -{\frac{5}{12}}& -{\frac{\sqrt{3}}{{{2}} {{\sqrt{2}}}}}& -{\frac{5}{{{3}} \cdot {{2}} {{\sqrt{2}}}}}& -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}\\ -{\frac{1}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}& 0& \frac{1}{\sqrt{3}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}}\\ \frac{7}{{{3}} \cdot {{2}} {{\sqrt{2}}}}& 0& -{\frac{1}{3}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}\\ -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}& \frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}& -{\frac{1}{4}}\end{array}\right]}} = {{ T} _7}$
${{{{{ T} _3}} {{{ T} _5}}} = {\left[\begin{array}{cccc} -{\frac{1}{3}}& 0& {\frac{1}{3}} {{{2}} {{\sqrt{2}}}}& 0\\ \frac{\sqrt{2}}{\sqrt{3}}& \frac{1}{2}& \frac{1}{{{2}} {{\sqrt{3}}}}& 0\\ -{{\frac{1}{3}} {\sqrt{2}}}& {\frac{1}{2}} {\sqrt{3}}& -{\frac{1}{6}}& 0\\ 0& 0& 0& 1\end{array}\right]}} = {{ T} _8}$
${{{{{ T} _4}} {{{ T} _5}}} = {\left[\begin{array}{cccc} -{\frac{5}{12}}& \frac{1}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}& \frac{7}{{{3}} \cdot {{2}} {{\sqrt{2}}}}& -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}\\ \frac{\sqrt{3}}{{{2}} {{\sqrt{2}}}}& 0& 0& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}}\\ -{\frac{5}{{{3}} \cdot {{2}} {{\sqrt{2}}}}}& -{\frac{1}{\sqrt{3}}}& -{\frac{1}{3}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}\\ -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}& \frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}& -{\frac{1}{4}}\end{array}\right]}} = {{ T} _9}$
${{{{{ T} _2}} {{{ T} _6}}} = {\left[\begin{array}{cccc} 1& 0& 0& 0\\ 0& -{\frac{1}{2}}& {\frac{1}{2}} {\sqrt{3}}& 0\\ 0& -{{\frac{1}{2}} {\sqrt{3}}}& -{\frac{1}{2}}& 0\\ 0& 0& 0& 1\end{array}\right]}} = {{{ T} _1} _0}$
${{{{{ T} _3}} {{{ T} _6}}} = {\left[\begin{array}{cccc} -{\frac{1}{3}}& -{\frac{\sqrt{2}}{\sqrt{3}}}& -{{\frac{1}{3}} {\sqrt{2}}}& 0\\ \frac{\sqrt{2}}{\sqrt{3}}& -{\frac{1}{2}}& \frac{1}{{{2}} {{\sqrt{3}}}}& 0\\ -{{\frac{1}{3}} {\sqrt{2}}}& -{\frac{1}{{{2}} {{\sqrt{3}}}}}& \frac{5}{6}& 0\\ 0& 0& 0& 1\end{array}\right]}} = {{{ T} _1} _1}$
${{{{{ T} _4}} {{{ T} _6}}} = {\left[\begin{array}{cccc} -{\frac{5}{12}}& -{\frac{\sqrt{2}}{\sqrt{3}}}& -{\frac{1}{{{3}} {{\sqrt{2}}}}}& -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}\\ \frac{\sqrt{3}}{{{2}} {{\sqrt{2}}}}& 0& 0& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}}\\ -{\frac{5}{{{3}} \cdot {{2}} {{\sqrt{2}}}}}& \frac{1}{\sqrt{3}}& -{\frac{1}{3}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}\\ -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}& 0& \frac{\sqrt{5}}{\sqrt{6}}& -{\frac{1}{4}}\end{array}\right]}} = {{{ T} _1} _2}$
${{{{{ T} _2}} {{{ T} _7}}} = {\left[\begin{array}{cccc} -{\frac{1}{12}}& \frac{1}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}& -{\frac{1}{{{3}} \cdot {{2}} {{\sqrt{2}}}}}& {\frac{1}{4}} {\sqrt{15}}\\ -{\frac{\sqrt{2}}{\sqrt{3}}}& 0& \frac{1}{\sqrt{3}}& 0\\ -{{\frac{1}{3}} {\sqrt{2}}}& -{\frac{1}{\sqrt{3}}}& -{\frac{2}{3}}& 0\\ -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}& \frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}& -{\frac{1}{4}}\end{array}\right]}} = {{{ T} _1} _3}$
${{{{{ T} _3}} {{{ T} _7}}} = {\left[\begin{array}{cccc} -{\frac{5}{12}}& -{\frac{\sqrt{3}}{{{2}} {{\sqrt{2}}}}}& -{\frac{5}{{{3}} \cdot {{2}} {{\sqrt{2}}}}}& -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}\\ -{\frac{\sqrt{3}}{{{2}} {{\sqrt{2}}}}}& 0& 0& \frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}\\ -{\frac{5}{{{3}} \cdot {{2}} {{\sqrt{2}}}}}& 0& \frac{2}{3}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}\\ -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}& \frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}& -{\frac{1}{4}}\end{array}\right]}} = {{{ T} _1} _4}$
${{{{{ T} _4}} {{{ T} _7}}} = {\left[\begin{array}{cccc} -{\frac{5}{12}}& -{\frac{\sqrt{2}}{\sqrt{3}}}& -{\frac{1}{{{3}} {{\sqrt{2}}}}}& -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}\\ \frac{1}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}& -{\frac{1}{2}}& \frac{1}{{{2}} {{\sqrt{3}}}}& \frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}\\ \frac{7}{{{3}} \cdot {{2}} {{\sqrt{2}}}}& -{\frac{1}{{{2}} {{\sqrt{3}}}}}& \frac{1}{6}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}\\ -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}& 0& \frac{\sqrt{5}}{\sqrt{6}}& -{\frac{1}{4}}\end{array}\right]}} = {{{ T} _1} _5}$
${{{{{ T} _3}} {{{ T} _8}}} = {\left[\begin{array}{cccc} -{\frac{1}{3}}& 0& {\frac{1}{3}} {{{2}} {{\sqrt{2}}}}& 0\\ 0& -{1}& 0& 0\\ {\frac{1}{3}} {{{2}} {{\sqrt{2}}}}& 0& \frac{1}{3}& 0\\ 0& 0& 0& 1\end{array}\right]}} = {{{ T} _1} _6}$
${{{{{ T} _4}} {{{ T} _8}}} = {\left[\begin{array}{cccc} -{\frac{1}{12}}& 0& {\frac{1}{3}} {{{2}} {{\sqrt{2}}}}& -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}\\ -{\frac{1}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}& -{\frac{1}{2}}& -{\frac{1}{{{2}} {{\sqrt{3}}}}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}}\\ -{\frac{1}{{{3}} \cdot {{2}} {{\sqrt{2}}}}}& {\frac{1}{2}} {\sqrt{3}}& -{\frac{1}{6}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}\\ {\frac{1}{4}} {\sqrt{15}}& 0& 0& -{\frac{1}{4}}\end{array}\right]}} = {{{ T} _1} _7}$
${{{{{ T} _2}} {{{ T} _9}}} = {\left[\begin{array}{cccc} -{\frac{1}{12}}& \frac{1}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}& -{\frac{1}{{{3}} \cdot {{2}} {{\sqrt{2}}}}}& {\frac{1}{4}} {\sqrt{15}}\\ \frac{\sqrt{2}}{\sqrt{3}}& \frac{1}{2}& \frac{1}{{{2}} {{\sqrt{3}}}}& 0\\ -{{\frac{1}{3}} {\sqrt{2}}}& \frac{1}{{{2}} {{\sqrt{3}}}}& \frac{5}{6}& 0\\ -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}& \frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}& -{\frac{1}{4}}\end{array}\right]}} = {{{ T} _1} _8}$
${{{{{ T} _3}} {{{ T} _9}}} = {\left[\begin{array}{cccc} -{\frac{5}{12}}& \frac{1}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}& \frac{7}{{{3}} \cdot {{2}} {{\sqrt{2}}}}& -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}\\ \frac{1}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}& \frac{1}{2}& \frac{1}{{{2}} {{\sqrt{3}}}}& \frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}\\ \frac{7}{{{3}} \cdot {{2}} {{\sqrt{2}}}}& \frac{1}{{{2}} {{\sqrt{3}}}}& \frac{1}{6}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}\\ -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}& \frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}& -{\frac{1}{4}}\end{array}\right]}} = {{{ T} _1} _9}$
${{{{{ T} _4}} {{{ T} _9}}} = {\left[\begin{array}{cccc} -{\frac{1}{12}}& 0& {\frac{1}{3}} {{{2}} {{\sqrt{2}}}}& -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}\\ \frac{1}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}& -{\frac{1}{2}}& \frac{1}{{{2}} {{\sqrt{3}}}}& \frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}\\ -{\frac{1}{{{3}} \cdot {{2}} {{\sqrt{2}}}}}& -{{\frac{1}{2}} {\sqrt{3}}}& -{\frac{1}{6}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}\\ {\frac{1}{4}} {\sqrt{15}}& 0& 0& -{\frac{1}{4}}\end{array}\right]}} = {{{ T} _2} _0}$
${{{{{ T} _2}} {{{{ T} _1} _0}}} = {\left[\begin{array}{cccc} -{\frac{1}{3}}& \frac{\sqrt{2}}{\sqrt{3}}& -{{\frac{1}{3}} {\sqrt{2}}}& 0\\ 0& \frac{1}{2}& {\frac{1}{2}} {\sqrt{3}}& 0\\ {\frac{1}{3}} {{{2}} {{\sqrt{2}}}}& \frac{1}{{{2}} {{\sqrt{3}}}}& -{\frac{1}{6}}& 0\\ 0& 0& 0& 1\end{array}\right]}} = {{{ T} _2} _1}$
${{{{{ T} _4}} {{{{ T} _1} _0}}} = {\left[\begin{array}{cccc} \frac{11}{12}& 0& \frac{1}{{{3}} {{\sqrt{2}}}}& -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}\\ -{\frac{1}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}& \frac{1}{2}& -{\frac{1}{{{2}} {{\sqrt{3}}}}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}}\\ -{\frac{1}{{{3}} \cdot {{2}} {{\sqrt{2}}}}}& -{{\frac{1}{2}} {\sqrt{3}}}& -{\frac{1}{6}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}\\ -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}& 0& \frac{\sqrt{5}}{\sqrt{6}}& -{\frac{1}{4}}\end{array}\right]}} = {{{ T} _2} _2}$
${{{{{ T} _2}} {{{{ T} _1} _1}}} = {\left[\begin{array}{cccc} -{\frac{1}{3}}& \frac{\sqrt{2}}{\sqrt{3}}& -{{\frac{1}{3}} {\sqrt{2}}}& 0\\ \frac{\sqrt{2}}{\sqrt{3}}& 0& -{\frac{1}{\sqrt{3}}}& 0\\ -{{\frac{1}{3}} {\sqrt{2}}}& -{\frac{1}{\sqrt{3}}}& -{\frac{2}{3}}& 0\\ 0& 0& 0& 1\end{array}\right]}} = {{{ T} _2} _3}$
${{{{{ T} _4}} {{{{ T} _1} _1}}} = {\left[\begin{array}{cccc} -{\frac{1}{12}}& -{\frac{\sqrt{2}}{\sqrt{3}}}& -{{\frac{1}{3}} {\sqrt{2}}}& -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}\\ -{\frac{1}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}& \frac{1}{2}& -{\frac{1}{{{2}} {{\sqrt{3}}}}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}}\\ -{\frac{1}{{{3}} \cdot {{2}} {{\sqrt{2}}}}}& -{\frac{1}{{{2}} {{\sqrt{3}}}}}& \frac{5}{6}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}\\ {\frac{1}{4}} {\sqrt{15}}& 0& 0& -{\frac{1}{4}}\end{array}\right]}} = {{{ T} _2} _4}$
${{{{{ T} _2}} {{{{ T} _1} _2}}} = {\left[\begin{array}{cccc} -{\frac{1}{12}}& 0& \frac{1}{{{3}} {{\sqrt{2}}}}& {\frac{1}{4}} {\sqrt{15}}\\ \frac{\sqrt{2}}{\sqrt{3}}& -{\frac{1}{2}}& \frac{1}{{{2}} {{\sqrt{3}}}}& 0\\ -{{\frac{1}{3}} {\sqrt{2}}}& -{{\frac{1}{2}} {\sqrt{3}}}& -{\frac{1}{6}}& 0\\ -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}& 0& \frac{\sqrt{5}}{\sqrt{6}}& -{\frac{1}{4}}\end{array}\right]}} = {{{ T} _2} _5}$
${{{{{ T} _4}} {{{{ T} _1} _2}}} = {\left[\begin{array}{cccc} -{\frac{1}{12}}& -{\frac{\sqrt{2}}{\sqrt{3}}}& -{{\frac{1}{3}} {\sqrt{2}}}& -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}\\ \frac{1}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}& 0& -{\frac{1}{\sqrt{3}}}& \frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}\\ -{\frac{1}{{{3}} \cdot {{2}} {{\sqrt{2}}}}}& \frac{1}{\sqrt{3}}& -{\frac{2}{3}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}\\ {\frac{1}{4}} {\sqrt{15}}& 0& 0& -{\frac{1}{4}}\end{array}\right]}} = {{{ T} _2} _6}$
${{{{{ T} _2}} {{{{ T} _1} _3}}} = {\left[\begin{array}{cccc} \frac{11}{12}& \frac{1}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}& -{\frac{1}{{{3}} \cdot {{2}} {{\sqrt{2}}}}}& -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}\\ 0& \frac{1}{2}& {\frac{1}{2}} {\sqrt{3}}& 0\\ \frac{1}{{{3}} {{\sqrt{2}}}}& \frac{1}{{{2}} {{\sqrt{3}}}}& -{\frac{1}{6}}& \frac{\sqrt{5}}{\sqrt{6}}\\ -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}& \frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}& -{\frac{1}{4}}\end{array}\right]}} = {{{ T} _2} _7}$
${{{{{ T} _2}} {{{{ T} _1} _4}}} = {\left[\begin{array}{cccc} \frac{11}{12}& \frac{1}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}& -{\frac{1}{{{3}} \cdot {{2}} {{\sqrt{2}}}}}& -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}\\ \frac{1}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}& 0& -{\frac{1}{\sqrt{3}}}& \frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}\\ -{\frac{1}{{{3}} \cdot {{2}} {{\sqrt{2}}}}}& -{\frac{1}{\sqrt{3}}}& -{\frac{2}{3}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}\\ -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}& \frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}& -{\frac{1}{4}}\end{array}\right]}} = {{{ T} _2} _8}$
${{{{{ T} _3}} {{{{ T} _1} _4}}} = {\left[\begin{array}{cccc} -{\frac{5}{12}}& -{\frac{\sqrt{3}}{{{2}} {{\sqrt{2}}}}}& -{\frac{5}{{{3}} \cdot {{2}} {{\sqrt{2}}}}}& -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}\\ \frac{\sqrt{2}}{\sqrt{3}}& 0& -{\frac{1}{\sqrt{3}}}& 0\\ -{\frac{1}{{{3}} {{\sqrt{2}}}}}& 0& -{\frac{1}{3}}& \frac{\sqrt{5}}{\sqrt{6}}\\ -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}& \frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}& -{\frac{1}{4}}\end{array}\right]}} = {{{ T} _2} _9}$
${{{{{ T} _2}} {{{{ T} _1} _5}}} = {\left[\begin{array}{cccc} -{\frac{5}{12}}& \frac{\sqrt{2}}{\sqrt{3}}& -{\frac{1}{{{3}} {{\sqrt{2}}}}}& -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}\\ -{\frac{\sqrt{3}}{{{2}} {{\sqrt{2}}}}}& 0& 0& \frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}\\ -{\frac{5}{{{3}} \cdot {{2}} {{\sqrt{2}}}}}& -{\frac{1}{\sqrt{3}}}& -{\frac{1}{3}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}\\ -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}& 0& \frac{\sqrt{5}}{\sqrt{6}}& -{\frac{1}{4}}\end{array}\right]}} = {{{ T} _3} _0}$
${{{{{ T} _3}} {{{{ T} _1} _5}}} = {\left[\begin{array}{cccc} -{\frac{5}{12}}& -{\frac{\sqrt{2}}{\sqrt{3}}}& -{\frac{1}{{{3}} {{\sqrt{2}}}}}& -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}\\ -{\frac{\sqrt{2}}{\sqrt{3}}}& \frac{1}{2}& -{\frac{1}{{{2}} {{\sqrt{3}}}}}& 0\\ -{\frac{1}{{{3}} {{\sqrt{2}}}}}& -{\frac{1}{{{2}} {{\sqrt{3}}}}}& \frac{1}{6}& \frac{\sqrt{5}}{\sqrt{6}}\\ -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}& 0& \frac{\sqrt{5}}{\sqrt{6}}& -{\frac{1}{4}}\end{array}\right]}} = {{{ T} _3} _1}$
${{{{{ T} _2}} {{{{ T} _1} _6}}} = {\left[\begin{array}{cccc} -{\frac{1}{3}}& \frac{\sqrt{2}}{\sqrt{3}}& -{{\frac{1}{3}} {\sqrt{2}}}& 0\\ -{\frac{\sqrt{2}}{\sqrt{3}}}& -{\frac{1}{2}}& -{\frac{1}{{{2}} {{\sqrt{3}}}}}& 0\\ -{{\frac{1}{3}} {\sqrt{2}}}& \frac{1}{{{2}} {{\sqrt{3}}}}& \frac{5}{6}& 0\\ 0& 0& 0& 1\end{array}\right]}} = {{{ T} _3} _2}$
${{{{{ T} _4}} {{{{ T} _1} _6}}} = {\left[\begin{array}{cccc} -{\frac{5}{12}}& -{\frac{1}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}& \frac{7}{{{3}} \cdot {{2}} {{\sqrt{2}}}}& -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}\\ -{\frac{1}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}& \frac{1}{2}& -{\frac{1}{{{2}} {{\sqrt{3}}}}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}}\\ \frac{7}{{{3}} \cdot {{2}} {{\sqrt{2}}}}& -{\frac{1}{{{2}} {{\sqrt{3}}}}}& \frac{1}{6}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}\\ -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}& -{\frac{1}{4}}\end{array}\right]}} = {{{ T} _3} _3}$
${{{{{ T} _2}} {{{{ T} _1} _7}}} = {\left[\begin{array}{cccc} \frac{1}{4}& 0& 0& {\frac{1}{4}} {\sqrt{15}}\\ 0& -{1}& 0& 0\\ 0& 0& 1& 0\\ {\frac{1}{4}} {\sqrt{15}}& 0& 0& -{\frac{1}{4}}\end{array}\right]}} = {{{ T} _3} _4}$
${{{{{ T} _4}} {{{{ T} _1} _7}}} = {\left[\begin{array}{cccc} -{\frac{5}{12}}& -{\frac{1}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}& \frac{7}{{{3}} \cdot {{2}} {{\sqrt{2}}}}& -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}\\ -{\frac{\sqrt{3}}{{{2}} {{\sqrt{2}}}}}& 0& 0& \frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}\\ -{\frac{5}{{{3}} \cdot {{2}} {{\sqrt{2}}}}}& \frac{1}{\sqrt{3}}& -{\frac{1}{3}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}\\ -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}& -{\frac{1}{4}}\end{array}\right]}} = {{{ T} _3} _5}$
${{{{{ T} _3}} {{{{ T} _1} _8}}} = {\left[\begin{array}{cccc} -{\frac{1}{12}}& \frac{1}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}& -{\frac{1}{{{3}} \cdot {{2}} {{\sqrt{2}}}}}& {\frac{1}{4}} {\sqrt{15}}\\ 0& -{\frac{1}{2}}& -{{\frac{1}{2}} {\sqrt{3}}}& 0\\ {\frac{1}{3}} {{{2}} {{\sqrt{2}}}}& \frac{1}{{{2}} {{\sqrt{3}}}}& -{\frac{1}{6}}& 0\\ -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}& \frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}& -{\frac{1}{4}}\end{array}\right]}} = {{{ T} _3} _6}$
${{{{{ T} _3}} {{{{ T} _1} _9}}} = {\left[\begin{array}{cccc} -{\frac{5}{12}}& \frac{1}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}& \frac{7}{{{3}} \cdot {{2}} {{\sqrt{2}}}}& -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}\\ -{\frac{\sqrt{2}}{\sqrt{3}}}& -{\frac{1}{2}}& -{\frac{1}{{{2}} {{\sqrt{3}}}}}& 0\\ -{\frac{1}{{{3}} {{\sqrt{2}}}}}& \frac{1}{{{2}} {{\sqrt{3}}}}& \frac{1}{6}& \frac{\sqrt{5}}{\sqrt{6}}\\ -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}& \frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}& -{\frac{1}{4}}\end{array}\right]}} = {{{ T} _3} _7}$
${{{{{ T} _2}} {{{{ T} _2} _0}}} = {\left[\begin{array}{cccc} -{\frac{1}{12}}& \frac{\sqrt{2}}{\sqrt{3}}& -{{\frac{1}{3}} {\sqrt{2}}}& -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}\\ \frac{1}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}& \frac{1}{2}& \frac{1}{{{2}} {{\sqrt{3}}}}& \frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}\\ -{\frac{1}{{{3}} \cdot {{2}} {{\sqrt{2}}}}}& \frac{1}{{{2}} {{\sqrt{3}}}}& \frac{5}{6}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}\\ {\frac{1}{4}} {\sqrt{15}}& 0& 0& -{\frac{1}{4}}\end{array}\right]}} = {{{ T} _3} _8}$
${{{{{ T} _3}} {{{{ T} _2} _0}}} = {\left[\begin{array}{cccc} -{\frac{1}{12}}& 0& {\frac{1}{3}} {{{2}} {{\sqrt{2}}}}& -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}\\ 0& 1& 0& 0\\ \frac{1}{{{3}} {{\sqrt{2}}}}& 0& \frac{1}{3}& \frac{\sqrt{5}}{\sqrt{6}}\\ {\frac{1}{4}} {\sqrt{15}}& 0& 0& -{\frac{1}{4}}\end{array}\right]}} = {{{ T} _3} _9}$
${{{{{ T} _4}} {{{{ T} _2} _1}}} = {\left[\begin{array}{cccc} -{\frac{5}{12}}& \frac{\sqrt{2}}{\sqrt{3}}& -{\frac{1}{{{3}} {{\sqrt{2}}}}}& -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}\\ -{\frac{1}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}& -{\frac{1}{2}}& -{\frac{1}{{{2}} {{\sqrt{3}}}}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}}\\ \frac{7}{{{3}} \cdot {{2}} {{\sqrt{2}}}}& \frac{1}{{{2}} {{\sqrt{3}}}}& \frac{1}{6}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}\\ -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}& 0& \frac{\sqrt{5}}{\sqrt{6}}& -{\frac{1}{4}}\end{array}\right]}} = {{{ T} _4} _0}$
${{{{{ T} _2}} {{{{ T} _2} _2}}} = {\left[\begin{array}{cccc} -{\frac{1}{12}}& 0& \frac{1}{{{3}} {{\sqrt{2}}}}& {\frac{1}{4}} {\sqrt{15}}\\ 0& 1& 0& 0\\ {\frac{1}{3}} {{{2}} {{\sqrt{2}}}}& 0& \frac{1}{3}& 0\\ -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}& 0& \frac{\sqrt{5}}{\sqrt{6}}& -{\frac{1}{4}}\end{array}\right]}} = {{{ T} _4} _1}$
${{{{{ T} _3}} {{{{ T} _2} _2}}} = {\left[\begin{array}{cccc} \frac{11}{12}& 0& \frac{1}{{{3}} {{\sqrt{2}}}}& -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}\\ \frac{1}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}& \frac{1}{2}& \frac{1}{{{2}} {{\sqrt{3}}}}& \frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}\\ -{\frac{1}{{{3}} \cdot {{2}} {{\sqrt{2}}}}}& {\frac{1}{2}} {\sqrt{3}}& -{\frac{1}{6}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}\\ -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}& 0& \frac{\sqrt{5}}{\sqrt{6}}& -{\frac{1}{4}}\end{array}\right]}} = {{{ T} _4} _2}$
${{{{{ T} _4}} {{{{ T} _2} _3}}} = {\left[\begin{array}{cccc} -{\frac{1}{12}}& \frac{\sqrt{2}}{\sqrt{3}}& -{{\frac{1}{3}} {\sqrt{2}}}& -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}\\ -{\frac{1}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}& 0& \frac{1}{\sqrt{3}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}}\\ -{\frac{1}{{{3}} \cdot {{2}} {{\sqrt{2}}}}}& -{\frac{1}{\sqrt{3}}}& -{\frac{2}{3}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}\\ {\frac{1}{4}} {\sqrt{15}}& 0& 0& -{\frac{1}{4}}\end{array}\right]}} = {{{ T} _4} _3}$
${{{{{ T} _2}} {{{{ T} _2} _4}}} = {\left[\begin{array}{cccc} \frac{1}{4}& 0& 0& {\frac{1}{4}} {\sqrt{15}}\\ 0& \frac{1}{2}& -{{\frac{1}{2}} {\sqrt{3}}}& 0\\ 0& -{{\frac{1}{2}} {\sqrt{3}}}& -{\frac{1}{2}}& 0\\ {\frac{1}{4}} {\sqrt{15}}& 0& 0& -{\frac{1}{4}}\end{array}\right]}} = {{{ T} _4} _4}$
${{{{{ T} _2}} {{{{ T} _2} _5}}} = {\left[\begin{array}{cccc} -{\frac{5}{12}}& \frac{\sqrt{2}}{\sqrt{3}}& -{\frac{1}{{{3}} {{\sqrt{2}}}}}& -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}\\ \frac{\sqrt{2}}{\sqrt{3}}& \frac{1}{2}& \frac{1}{{{2}} {{\sqrt{3}}}}& 0\\ -{\frac{1}{{{3}} {{\sqrt{2}}}}}& \frac{1}{{{2}} {{\sqrt{3}}}}& \frac{1}{6}& \frac{\sqrt{5}}{\sqrt{6}}\\ -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}& 0& \frac{\sqrt{5}}{\sqrt{6}}& -{\frac{1}{4}}\end{array}\right]}} = {{{ T} _4} _5}$
${{{{{ T} _3}} {{{{ T} _2} _6}}} = {\left[\begin{array}{cccc} -{\frac{1}{12}}& -{\frac{\sqrt{2}}{\sqrt{3}}}& -{{\frac{1}{3}} {\sqrt{2}}}& -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}\\ 0& -{\frac{1}{2}}& {\frac{1}{2}} {\sqrt{3}}& 0\\ \frac{1}{{{3}} {{\sqrt{2}}}}& -{\frac{1}{{{2}} {{\sqrt{3}}}}}& -{\frac{1}{6}}& \frac{\sqrt{5}}{\sqrt{6}}\\ {\frac{1}{4}} {\sqrt{15}}& 0& 0& -{\frac{1}{4}}\end{array}\right]}} = {{{ T} _4} _6}$
${{{{{ T} _4}} {{{{ T} _2} _7}}} = {\left[\begin{array}{cccc} \frac{11}{12}& 0& \frac{1}{{{3}} {{\sqrt{2}}}}& -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}\\ 0& -{1}& 0& 0\\ \frac{1}{{{3}} {{\sqrt{2}}}}& 0& \frac{1}{3}& \frac{\sqrt{5}}{\sqrt{6}}\\ -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}& 0& \frac{\sqrt{5}}{\sqrt{6}}& -{\frac{1}{4}}\end{array}\right]}} = {{{ T} _4} _7}$
${{{{{ T} _4}} {{{{ T} _3} _2}}} = {\left[\begin{array}{cccc} -{\frac{5}{12}}& \frac{\sqrt{3}}{{{2}} {{\sqrt{2}}}}& -{\frac{5}{{{3}} \cdot {{2}} {{\sqrt{2}}}}}& -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}\\ \frac{\sqrt{3}}{{{2}} {{\sqrt{2}}}}& 0& 0& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}}\\ -{\frac{5}{{{3}} \cdot {{2}} {{\sqrt{2}}}}}& 0& \frac{2}{3}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}\\ -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}& -{\frac{1}{4}}\end{array}\right]}} = {{{ T} _4} _8}$
${{{{{ T} _2}} {{{{ T} _3} _3}}} = {\left[\begin{array}{cccc} -{\frac{1}{12}}& -{\frac{1}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}& -{\frac{1}{{{3}} \cdot {{2}} {{\sqrt{2}}}}}& {\frac{1}{4}} {\sqrt{15}}\\ -{\frac{\sqrt{2}}{\sqrt{3}}}& \frac{1}{2}& -{\frac{1}{{{2}} {{\sqrt{3}}}}}& 0\\ -{{\frac{1}{3}} {\sqrt{2}}}& -{\frac{1}{{{2}} {{\sqrt{3}}}}}& \frac{5}{6}& 0\\ -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}& -{\frac{1}{4}}\end{array}\right]}} = {{{ T} _4} _9}$
${{{{{ T} _2}} {{{{ T} _3} _4}}} = {\left[\begin{array}{cccc} -{\frac{1}{12}}& \frac{\sqrt{2}}{\sqrt{3}}& -{{\frac{1}{3}} {\sqrt{2}}}& -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}\\ 0& -{\frac{1}{2}}& -{{\frac{1}{2}} {\sqrt{3}}}& 0\\ \frac{1}{{{3}} {{\sqrt{2}}}}& \frac{1}{{{2}} {{\sqrt{3}}}}& -{\frac{1}{6}}& \frac{\sqrt{5}}{\sqrt{6}}\\ {\frac{1}{4}} {\sqrt{15}}& 0& 0& -{\frac{1}{4}}\end{array}\right]}} = {{{ T} _5} _0}$
${{{{{ T} _2}} {{{{ T} _3} _5}}} = {\left[\begin{array}{cccc} \frac{11}{12}& -{\frac{1}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}& -{\frac{1}{{{3}} \cdot {{2}} {{\sqrt{2}}}}}& -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}\\ \frac{1}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}& -{\frac{1}{2}}& \frac{1}{{{2}} {{\sqrt{3}}}}& \frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}\\ -{\frac{1}{{{3}} \cdot {{2}} {{\sqrt{2}}}}}& -{\frac{1}{{{2}} {{\sqrt{3}}}}}& \frac{5}{6}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}\\ -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}& -{\frac{1}{4}}\end{array}\right]}} = {{{ T} _5} _1}$
${{{{{ T} _3}} {{{{ T} _3} _5}}} = {\left[\begin{array}{cccc} -{\frac{5}{12}}& -{\frac{1}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}& \frac{7}{{{3}} \cdot {{2}} {{\sqrt{2}}}}& -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}\\ \frac{\sqrt{2}}{\sqrt{3}}& -{\frac{1}{2}}& \frac{1}{{{2}} {{\sqrt{3}}}}& 0\\ -{\frac{1}{{{3}} {{\sqrt{2}}}}}& -{\frac{1}{{{2}} {{\sqrt{3}}}}}& \frac{1}{6}& \frac{\sqrt{5}}{\sqrt{6}}\\ -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}& -{\frac{1}{4}}\end{array}\right]}} = {{{ T} _5} _2}$
${{{{{ T} _4}} {{{{ T} _3} _6}}} = {\left[\begin{array}{cccc} -{\frac{1}{12}}& -{\frac{1}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}& -{\frac{1}{{{3}} \cdot {{2}} {{\sqrt{2}}}}}& {\frac{1}{4}} {\sqrt{15}}\\ 0& -{\frac{1}{2}}& {\frac{1}{2}} {\sqrt{3}}& 0\\ {\frac{1}{3}} {{{2}} {{\sqrt{2}}}}& -{\frac{1}{{{2}} {{\sqrt{3}}}}}& -{\frac{1}{6}}& 0\\ -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}& -{\frac{1}{4}}\end{array}\right]}} = {{{ T} _5} _3}$
${{{{{ T} _2}} {{{{ T} _4} _0}}} = {\left[\begin{array}{cccc} -{\frac{1}{12}}& 0& \frac{1}{{{3}} {{\sqrt{2}}}}& {\frac{1}{4}} {\sqrt{15}}\\ -{\frac{\sqrt{2}}{\sqrt{3}}}& -{\frac{1}{2}}& -{\frac{1}{{{2}} {{\sqrt{3}}}}}& 0\\ -{{\frac{1}{3}} {\sqrt{2}}}& {\frac{1}{2}} {\sqrt{3}}& -{\frac{1}{6}}& 0\\ -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}& 0& \frac{\sqrt{5}}{\sqrt{6}}& -{\frac{1}{4}}\end{array}\right]}} = {{{ T} _5} _4}$
${{{{{ T} _4}} {{{{ T} _4} _0}}} = {\left[\begin{array}{cccc} -{\frac{5}{12}}& \frac{\sqrt{3}}{{{2}} {{\sqrt{2}}}}& -{\frac{5}{{{3}} \cdot {{2}} {{\sqrt{2}}}}}& -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}\\ \frac{1}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}& 0& -{\frac{1}{\sqrt{3}}}& \frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}\\ \frac{7}{{{3}} \cdot {{2}} {{\sqrt{2}}}}& 0& -{\frac{1}{3}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}\\ -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}& -{\frac{1}{4}}\end{array}\right]}} = {{{ T} _5} _5}$
${{{{{ T} _2}} {{{{ T} _4} _3}}} = {\left[\begin{array}{cccc} \frac{1}{4}& 0& 0& {\frac{1}{4}} {\sqrt{15}}\\ 0& \frac{1}{2}& {\frac{1}{2}} {\sqrt{3}}& 0\\ 0& {\frac{1}{2}} {\sqrt{3}}& -{\frac{1}{2}}& 0\\ {\frac{1}{4}} {\sqrt{15}}& 0& 0& -{\frac{1}{4}}\end{array}\right]}} = {{{ T} _5} _6}$
${{{{{ T} _4}} {{{{ T} _4} _7}}} = {\left[\begin{array}{cccc} \frac{11}{12}& -{\frac{1}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}& -{\frac{1}{{{3}} \cdot {{2}} {{\sqrt{2}}}}}& -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}\\ 0& \frac{1}{2}& -{{\frac{1}{2}} {\sqrt{3}}}& 0\\ \frac{1}{{{3}} {{\sqrt{2}}}}& -{\frac{1}{{{2}} {{\sqrt{3}}}}}& -{\frac{1}{6}}& \frac{\sqrt{5}}{\sqrt{6}}\\ -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}& -{\frac{1}{4}}\end{array}\right]}} = {{{ T} _5} _7}$
${{{{{ T} _2}} {{{{ T} _4} _8}}} = {\left[\begin{array}{cccc} -{\frac{1}{12}}& -{\frac{1}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}& -{\frac{1}{{{3}} \cdot {{2}} {{\sqrt{2}}}}}& {\frac{1}{4}} {\sqrt{15}}\\ \frac{\sqrt{2}}{\sqrt{3}}& 0& -{\frac{1}{\sqrt{3}}}& 0\\ -{{\frac{1}{3}} {\sqrt{2}}}& \frac{1}{\sqrt{3}}& -{\frac{2}{3}}& 0\\ -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}& -{\frac{1}{4}}\end{array}\right]}} = {{{ T} _5} _8}$
${{{{{ T} _4}} {{{{ T} _5} _0}}} = {\left[\begin{array}{cccc} -{\frac{5}{12}}& \frac{\sqrt{3}}{{{2}} {{\sqrt{2}}}}& -{\frac{5}{{{3}} \cdot {{2}} {{\sqrt{2}}}}}& -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}\\ -{\frac{\sqrt{2}}{\sqrt{3}}}& 0& \frac{1}{\sqrt{3}}& 0\\ -{\frac{1}{{{3}} {{\sqrt{2}}}}}& 0& -{\frac{1}{3}}& \frac{\sqrt{5}}{\sqrt{6}}\\ -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}& -{\frac{1}{4}}\end{array}\right]}} = {{{ T} _5} _9}$
${{{{{ T} _3}} {{{{ T} _5} _7}}} = {\left[\begin{array}{cccc} \frac{11}{12}& -{\frac{1}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}& -{\frac{1}{{{3}} \cdot {{2}} {{\sqrt{2}}}}}& -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}\\ -{\frac{1}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}& 0& \frac{1}{\sqrt{3}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}}\\ -{\frac{1}{{{3}} \cdot {{2}} {{\sqrt{2}}}}}& \frac{1}{\sqrt{3}}& -{\frac{2}{3}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}\\ -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}& -{\frac{1}{4}}\end{array}\right]}} = {{{ T} _6} _0}$
Vertexes as column vectors:

${V} = {\left[\begin{array}{ccccc} {\frac{1}{4}} {\sqrt{15}}& 0& -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}& -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}& -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}\\ 0& 0& 0& \frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}}\\ 0& 0& \frac{\sqrt{5}}{\sqrt{6}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}\\ -{\frac{1}{4}}& 1& -{\frac{1}{4}}& -{\frac{1}{4}}& -{\frac{1}{4}}\end{array}\right]}$

Vertex inner products:

${{{{{ V} ^T}} {{V}}} = {{{\left[\begin{array}{cccc} {\frac{1}{4}} {\sqrt{15}}& 0& 0& -{\frac{1}{4}}\\ 0& 0& 0& 1\\ -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}& 0& \frac{\sqrt{5}}{\sqrt{6}}& -{\frac{1}{4}}\\ -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}& \frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}& -{\frac{1}{4}}\\ -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}& -{\frac{1}{4}}\end{array}\right]}} {{\left[\begin{array}{ccccc} {\frac{1}{4}} {\sqrt{15}}& 0& -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}& -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}& -{\frac{\sqrt{5}}{{{4}} {{\sqrt{3}}}}}\\ 0& 0& 0& \frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}}\\ 0& 0& \frac{\sqrt{5}}{\sqrt{6}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}& -{\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}}\\ -{\frac{1}{4}}& 1& -{\frac{1}{4}}& -{\frac{1}{4}}& -{\frac{1}{4}}\end{array}\right]}}}} = {\left[\begin{array}{ccccc} 1& -{\frac{1}{4}}& -{\frac{1}{4}}& -{\frac{1}{4}}& -{\frac{1}{4}}\\ -{\frac{1}{4}}& 1& -{\frac{1}{4}}& -{\frac{1}{4}}& -{\frac{1}{4}}\\ -{\frac{1}{4}}& -{\frac{1}{4}}& 1& -{\frac{1}{4}}& -{\frac{1}{4}}\\ -{\frac{1}{4}}& -{\frac{1}{4}}& -{\frac{1}{4}}& 1& -{\frac{1}{4}}\\ -{\frac{1}{4}}& -{\frac{1}{4}}& -{\frac{1}{4}}& -{\frac{1}{4}}& 1\end{array}\right]}$

Table of $T_i \cdot v_j = v_k$:
V1 V2 V3 V4 V5
T1 V1 V2 V3 V4 V5
T2 V2 V3 V1 V4 V5
T3 V1 V3 V4 V2 V5
T4 V1 V2 V4 V5 V3
T5 V3 V1 V2 V4 V5
T6 V3 V4 V1 V2 V5
T7 V2 V4 V1 V5 V3
T8 V4 V1 V3 V2 V5
T9 V4 V1 V2 V5 V3
T10 V1 V4 V2 V3 V5
T11 V4 V2 V1 V3 V5
T12 V4 V5 V1 V2 V3
T13 V3 V4 V2 V5 V1
T14 V3 V2 V1 V5 V4
T15 V2 V5 V1 V3 V4
T16 V2 V1 V4 V3 V5
T17 V5 V1 V4 V2 V3
T18 V4 V2 V3 V5 V1
T19 V2 V1 V3 V5 V4
T20 V5 V1 V2 V3 V4
T21 V2 V4 V3 V1 V5
T22 V1 V5 V2 V4 V3
T23 V4 V3 V2 V1 V5
T24 V5 V2 V1 V4 V3
T25 V4 V5 V2 V3 V1
T26 V5 V3 V1 V2 V4
T27 V1 V4 V3 V5 V2
T28 V1 V3 V2 V5 V4
T29 V4 V3 V1 V5 V2
T30 V3 V5 V2 V1 V4
T31 V3 V5 V1 V4 V2
T32 V3 V2 V4 V1 V5
T33 V2 V1 V5 V4 V3
T34 V5 V2 V4 V3 V1
T35 V3 V1 V5 V2 V4
T36 V2 V3 V4 V5 V1
T37 V3 V1 V4 V5 V2
T38 V5 V2 V3 V1 V4
T39 V5 V1 V3 V4 V2
T40 V2 V5 V4 V1 V3
T41 V2 V5 V3 V4 V1
T42 V1 V5 V3 V2 V4
T43 V5 V4 V2 V1 V3
T44 V5 V3 V2 V4 V1
T45 V4 V5 V3 V1 V2
T46 V5 V4 V1 V3 V2
T47 V1 V5 V4 V3 V2
T48 V4 V2 V5 V1 V3
T49 V3 V2 V5 V4 V1
T50 V5 V3 V4 V1 V2
T51 V1 V2 V5 V3 V4
T52 V4 V1 V5 V3 V2
T53 V2 V4 V5 V3 V1
T54 V3 V5 V4 V2 V1
T55 V2 V3 V5 V1 V4
T56 V5 V4 V3 V2 V1
T57 V1 V3 V5 V4 V2
T58 V4 V3 V5 V2 V1
T59 V3 V4 V5 V1 V2
T60 V1 V4 V5 V2 V3


Table of $T_i \cdot T_j = T_k$:
T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 T23 T24 T25 T26 T27 T28 T29 T30 T31 T32 T33 T34 T35 T36 T37 T38 T39 T40 T41 T42 T43 T44 T45 T46 T47 T48 T49 T50 T51 T52 T53 T54 T55 T56 T57 T58 T59 T60
T1 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 T23 T24 T25 T26 T27 T28 T29 T30 T31 T32 T33 T34 T35 T36 T37 T38 T39 T40 T41 T42 T43 T44 T45 T46 T47 T48 T49 T50 T51 T52 T53 T54 T55 T56 T57 T58 T59 T60
T2 T2 T5 T59 T58 T1 T7 T8 T6 T10 T11 T9 T13 T14 T12 T16 T17 T15 T19 T20 T18 T22 T23 T21 T25 T26 T24 T28 T29 T27 T31 T32 T30 T34 T35 T33 T37 T38 T36 T40 T41 T39 T43 T44 T42 T46 T47 T45 T49 T50 T48 T52 T53 T51 T4 T56 T57 T55 T54 T60 T3
T3 T3 T10 T11 T52 T6 T59 T2 T9 T60 T7 T1 T33 T19 T15 T34 T13 T18 T35 T16 T12 T31 T28 T24 T32 T22 T27 T30 T25 T21 T26 T29 T23 T20 T14 T17 T46 T43 T39 T47 T37 T42 T45 T40 T36 T41 T44 T38 T56 T4 T51 T57 T49 T54 T55 T53 T58 T50 T48 T5 T8
T4 T4 T50 T31 T29 T55 T47 T40 T44 T18 T15 T12 T52 T58 T57 T37 T41 T46 T27 T24 T21 T49 T53 T56 T42 T39 T36 T9 T6 T1 T17 T33 T13 T3 T2 T8 T60 T10 T5 T54 T51 T48 T19 T14 T35 T23 T30 T28 T16 T20 T34 T7 T11 T59 T25 T38 T45 T43 T32 T22 T26
T5 T5 T1 T60 T54 T2 T8 T6 T7 T11 T9 T10 T14 T12 T13 T17 T15 T16 T20 T18 T19 T23 T21 T22 T26 T24 T25 T29 T27 T28 T32 T30 T31 T35 T33 T34 T38 T36 T37 T41 T39 T40 T44 T42 T43 T47 T45 T46 T50 T48 T49 T53 T51 T52 T58 T57 T55 T56 T4 T3 T59
T6 T6 T3 T8 T55 T10 T9 T59 T2 T1 T60 T7 T15 T33 T19 T18 T34 T13 T12 T35 T16 T24 T31 T28 T27 T32 T22 T21 T30 T25 T23 T26 T29 T17 T20 T14 T39 T46 T43 T42 T47 T37 T36 T45 T40 T38 T41 T44 T51 T56 T4 T54 T57 T49 T48 T50 T53 T58 T52 T11 T5
T7 T7 T59 T6 T56 T11 T10 T60 T5 T2 T3 T8 T16 T34 T20 T19 T35 T14 T13 T33 T17 T25 T32 T29 T28 T30 T23 T22 T31 T26 T21 T24 T27 T15 T18 T12 T40 T47 T44 T43 T45 T38 T37 T46 T41 T36 T39 T42 T52 T57 T58 T4 T55 T50 T49 T48 T51 T54 T53 T9 T1
T8 T8 T60 T7 T57 T9 T11 T3 T1 T5 T59 T6 T17 T35 T18 T20 T33 T12 T14 T34 T15 T26 T30 T27 T29 T31 T21 T23 T32 T24 T22 T25 T28 T16 T19 T13 T41 T45 T42 T44 T46 T36 T38 T47 T39 T37 T40 T43 T53 T55 T54 T58 T56 T48 T50 T49 T52 T4 T51 T10 T2
T9 T9 T8 T2 T50 T60 T1 T11 T3 T6 T5 T59 T18 T17 T35 T12 T20 T33 T15 T14 T34 T27 T26 T30 T21 T29 T31 T24 T23 T32 T28 T22 T25 T13 T16 T19 T42 T41 T45 T36 T44 T46 T39 T38 T47 T43 T37 T40 T54 T53 T55 T48 T58 T56 T51 T4 T49 T52 T57 T7 T10
T10 T10 T6 T5 T48 T3 T2 T9 T59 T7 T1 T60 T19 T15 T33 T13 T18 T34 T16 T12 T35 T28 T24 T31 T22 T27 T32 T25 T21 T30 T29 T23 T26 T14 T17 T20 T43 T39 T46 T37 T42 T47 T40 T36 T45 T44 T38 T41 T4 T51 T56 T49 T54 T57 T52 T58 T50 T53 T55 T8 T11
T11 T11 T7 T1 T49 T59 T5 T10 T60 T8 T2 T3 T20 T16 T34 T14 T19 T35 T17 T13 T33 T29 T25 T32 T23 T28 T30 T26 T22 T31 T27 T21 T24 T12 T15 T18 T44 T40 T47 T38 T43 T45 T41 T37 T46 T42 T36 T39 T58 T52 T57 T50 T4 T55 T53 T54 T48 T51 T56 T6 T9
T12 T12 T40 T4 T20 T22 T55 T15 T26 T44 T50 T31 T21 T41 T2 T57 T24 T8 T46 T58 T3 T1 T39 T13 T56 T6 T17 T36 T53 T33 T9 T49 T42 T52 T37 T27 T35 T51 T28 T5 T14 T23 T48 T10 T30 T19 T60 T54 T32 T11 T43 T34 T29 T38 T59 T25 T16 T7 T45 T47 T18
T13 T13 T41 T58 T18 T23 T56 T16 T24 T42 T48 T32 T22 T39 T5 T55 T25 T6 T47 T54 T59 T2 T40 T14 T57 T7 T15 T37 T51 T34 T10 T50 T43 T53 T38 T28 T33 T52 T29 T1 T12 T21 T49 T11 T31 T20 T3 T4 T30 T9 T44 T35 T27 T36 T60 T26 T17 T8 T46 T45 T19
T14 T14 T39 T54 T19 T21 T57 T17 T25 T43 T49 T30 T23 T40 T1 T56 T26 T7 T45 T4 T60 T5 T41 T12 T55 T8 T16 T38 T52 T35 T11 T48 T44 T51 T36 T29 T34 T53 T27 T2 T13 T22 T50 T9 T32 T18 T59 T58 T31 T10 T42 T33 T28 T37 T3 T24 T15 T6 T47 T46 T20
T15 T15 T47 T55 T16 T31 T50 T18 T22 T40 T4 T26 T24 T37 T3 T58 T27 T2 T41 T52 T8 T6 T42 T33 T53 T9 T13 T39 T49 T17 T1 T56 T36 T57 T46 T21 T14 T54 T30 T10 T19 T28 T51 T60 T23 T35 T5 T48 T29 T7 T45 T20 T25 T43 T11 T32 T34 T59 T38 T44 T12
T16 T16 T45 T56 T17 T32 T48 T19 T23 T41 T58 T24 T25 T38 T59 T54 T28 T5 T39 T53 T6 T7 T43 T34 T51 T10 T14 T40 T50 T15 T2 T57 T37 T55 T47 T22 T12 T4 T31 T11 T20 T29 T52 T3 T21 T33 T1 T49 T27 T8 T46 T18 T26 T44 T9 T30 T35 T60 T36 T42 T13
T17 T17 T46 T57 T15 T30 T49 T20 T21 T39 T54 T25 T26 T36 T60 T4 T29 T1 T40 T51 T7 T8 T44 T35 T52 T11 T12 T41 T48 T16 T5 T55 T38 T56 T45 T23 T13 T58 T32 T9 T18 T27 T53 T59 T22 T34 T2 T50 T28 T6 T47 T19 T24 T42 T10 T31 T33 T3 T37 T43 T14
T18 T18 T44 T50 T34 T26 T4 T12 T31 T47 T55 T22 T27 T46 T8 T52 T21 T3 T37 T57 T2 T9 T36 T17 T49 T1 T33 T42 T56 T13 T6 T53 T39 T58 T41 T24 T19 T48 T23 T60 T35 T30 T54 T5 T28 T14 T10 T51 T25 T59 T38 T16 T32 T45 T7 T29 T20 T11 T43 T40 T15
T19 T19 T42 T48 T35 T24 T58 T13 T32 T45 T56 T23 T28 T47 T6 T53 T22 T59 T38 T55 T5 T10 T37 T15 T50 T2 T34 T43 T57 T14 T7 T51 T40 T54 T39 T25 T20 T49 T21 T3 T33 T31 T4 T1 T29 T12 T11 T52 T26 T60 T36 T17 T30 T46 T8 T27 T18 T9 T44 T41 T16
T20 T20 T43 T49 T33 T25 T54 T14 T30 T46 T57 T21 T29 T45 T7 T51 T23 T60 T36 T56 T1 T11 T38 T16 T48 T5 T35 T44 T55 T12 T8 T52 T41 T4 T40 T26 T18 T50 T22 T59 T34 T32 T58 T2 T27 T13 T9 T53 T24 T3 T37 T15 T31 T47 T6 T28 T19 T10 T42 T39 T17
T21 T21 T14 T20 T3 T39 T25 T57 T17 T30 T43 T49 T1 T23 T40 T7 T56 T26 T60 T45 T4 T12 T5 T41 T16 T55 T8 T35 T38 T52 T44 T11 T48 T29 T51 T36 T27 T34 T53 T22 T2 T13 T32 T50 T9 T58 T18 T59 T42 T31 T10 T37 T33 T28 T47 T6 T24 T15 T19 T54 T46
T22 T22 T12 T18 T59 T40 T26 T55 T15 T31 T44 T50 T2 T21 T41 T8 T57 T24 T3 T46 T58 T13 T1 T39 T17 T56 T6 T33 T36 T53 T42 T9 T49 T27 T52 T37 T28 T35 T51 T23 T5 T14 T30 T48 T10 T54 T19 T60 T43 T32 T11 T38 T34 T29 T45 T7 T25 T16 T20 T4 T47
T23 T23 T13 T19 T60 T41 T24 T56 T16 T32 T42 T48 T5 T22 T39 T6 T55 T25 T59 T47 T54 T14 T2 T40 T15 T57 T7 T34 T37 T51 T43 T10 T50 T28 T53 T38 T29 T33 T52 T21 T1 T12 T31 T49 T11 T4 T20 T3 T44 T30 T9 T36 T35 T27 T46 T8 T26 T17 T18 T58 T45
T24 T24 T19 T16 T8 T42 T32 T58 T13 T23 T45 T56 T6 T28 T47 T59 T53 T22 T5 T38 T55 T15 T10 T37 T34 T50 T2 T14 T43 T57 T40 T7 T51 T25 T54 T39 T21 T20 T49 T31 T3 T33 T29 T4 T1 T52 T12 T11 T36 T26 T60 T46 T17 T30 T44 T9 T27 T18 T35 T48 T41
T25 T25 T20 T17 T6 T43 T30 T54 T14 T21 T46 T57 T7 T29 T45 T60 T51 T23 T1 T36 T56 T16 T11 T38 T35 T48 T5 T12 T44 T55 T41 T8 T52 T26 T4 T40 T22 T18 T50 T32 T59 T34 T27 T58 T2 T53 T13 T9 T37 T24 T3 T47 T15 T31 T42 T10 T28 T19 T33 T49 T39
T26 T26 T18 T15 T7 T44 T31 T4 T12 T22 T47 T55 T8 T27 T46 T3 T52 T21 T2 T37 T57 T17 T9 T36 T33 T49 T1 T13 T42 T56 T39 T6 T53 T24 T58 T41 T23 T19 T48 T30 T60 T35 T28 T54 T5 T51 T14 T10 T38 T25 T59 T45 T16 T32 T43 T11 T29 T20 T34 T50 T40
T27 T27 T35 T34 T2 T36 T29 T52 T33 T28 T38 T53 T9 T30 T44 T11 T49 T31 T10 T43 T50 T18 T60 T46 T20 T4 T3 T19 T45 T58 T47 T59 T54 T32 T48 T42 T24 T16 T56 T26 T8 T17 T25 T55 T6 T57 T15 T7 T39 T22 T5 T41 T13 T23 T40 T1 T21 T12 T14 T51 T37
T28 T28 T33 T35 T5 T37 T27 T53 T34 T29 T36 T51 T10 T31 T42 T9 T50 T32 T11 T44 T48 T19 T3 T47 T18 T58 T59 T20 T46 T54 T45 T60 T4 T30 T49 T43 T25 T17 T57 T24 T6 T15 T26 T56 T7 T55 T16 T8 T40 T23 T1 T39 T14 T21 T41 T2 T22 T13 T12 T52 T38
T29 T29 T34 T33 T1 T38 T28 T51 T35 T27 T37 T52 T11 T32 T43 T10 T48 T30 T9 T42 T49 T20 T59 T45 T19 T54 T60 T18 T47 T4 T46 T3 T58 T31 T50 T44 T26 T15 T55 T25 T7 T16 T24 T57 T8 T56 T17 T6 T41 T21 T2 T40 T12 T22 T39 T5 T23 T14 T13 T53 T36
T30 T30 T17 T14 T10 T46 T21 T49 T20 T25 T39 T54 T60 T26 T36 T1 T4 T29 T7 T40 T51 T35 T8 T44 T12 T52 T11 T16 T41 T48 T38 T5 T55 T23 T56 T45 T32 T13 T58 T27 T9 T18 T22 T53 T59 T50 T34 T2 T47 T28 T6 T42 T19 T24 T37 T3 T31 T33 T15 T57 T43
T31 T31 T15 T12 T11 T47 T22 T50 T18 T26 T40 T4 T3 T24 T37 T2 T58 T27 T8 T41 T52 T33 T6 T42 T13 T53 T9 T17 T39 T49 T36 T1 T56 T21 T57 T46 T30 T14 T54 T28 T10 T19 T23 T51 T60 T48 T35 T5 T45 T29 T7 T43 T20 T25 T38 T59 T32 T34 T16 T55 T44
T32 T32 T16 T13 T9 T45 T23 T48 T19 T24 T41 T58 T59 T25 T38 T5 T54 T28 T6 T39 T53 T34 T7 T43 T14 T51 T10 T15 T40 T50 T37 T2 T57 T22 T55 T47 T31 T12 T4 T29 T11 T20 T21 T52 T3 T49 T33 T1 T46 T27 T8 T44 T18 T26 T36 T60 T30 T35 T17 T56 T42
T33 T33 T37 T52 T12 T28 T53 T34 T27 T36 T51 T29 T31 T42 T10 T50 T32 T9 T44 T48 T11 T3 T47 T19 T58 T59 T18 T46 T54 T20 T60 T4 T45 T49 T43 T30 T17 T57 T25 T6 T15 T24 T56 T7 T26 T16 T8 T55 T23 T1 T40 T14 T21 T39 T5 T22 T13 T2 T41 T38 T35
T34 T34 T38 T53 T13 T29 T51 T35 T28 T37 T52 T27 T32 T43 T11 T48 T30 T10 T42 T49 T9 T59 T45 T20 T54 T60 T19 T47 T4 T18 T3 T58 T46 T50 T44 T31 T15 T55 T26 T7 T16 T25 T57 T8 T24 T17 T6 T56 T21 T2 T41 T12 T22 T40 T1 T23 T14 T5 T39 T36 T33
T35 T35 T36 T51 T14 T27 T52 T33 T29 T38 T53 T28 T30 T44 T9 T49 T31 T11 T43 T50 T10 T60 T46 T18 T4 T3 T20 T45 T58 T19 T59 T54 T47 T48 T42 T32 T16 T56 T24 T8 T17 T26 T55 T6 T25 T15 T7 T57 T22 T5 T39 T13 T23 T41 T2 T21 T12 T1 T40 T37 T34
T36 T36 T27 T37 T40 T35 T33 T29 T52 T53 T28 T38 T44 T9 T30 T31 T11 T49 T50 T10 T43 T46 T18 T60 T3 T20 T4 T58 T19 T45 T54 T47 T59 T42 T32 T48 T56 T24 T16 T17 T26 T8 T6 T25 T55 T7 T57 T15 T5 T39 T22 T23 T41 T13 T14 T12 T1 T21 T2 T34 T51
T37 T37 T28 T38 T41 T33 T34 T27 T53 T51 T29 T36 T42 T10 T31 T32 T9 T50 T48 T11 T44 T47 T19 T3 T59 T18 T58 T54 T20 T46 T4 T45 T60 T43 T30 T49 T57 T25 T17 T15 T24 T6 T7 T26 T56 T8 T55 T16 T1 T40 T23 T21 T39 T14 T12 T13 T2 T22 T5 T35 T52
T38 T38 T29 T36 T39 T34 T35 T28 T51 T52 T27 T37 T43 T11 T32 T30 T10 T48 T49 T9 T42 T45 T20 T59 T60 T19 T54 T4 T18 T47 T58 T46 T3 T44 T31 T50 T55 T26 T15 T16 T25 T7 T8 T24 T57 T6 T56 T17 T2 T41 T21 T22 T40 T12 T13 T14 T5 T23 T1 T33 T53
T39 T39 T21 T46 T47 T14 T17 T25 T57 T49 T30 T43 T40 T1 T23 T26 T7 T56 T4 T60 T45 T41 T12 T5 T8 T16 T55 T52 T35 T38 T48 T44 T11 T36 T29 T51 T53 T27 T34 T13 T22 T2 T9 T32 T50 T59 T58 T18 T10 T42 T31 T28 T37 T33 T19 T15 T6 T24 T3 T20 T54
T40 T40 T22 T47 T45 T12 T15 T26 T55 T50 T31 T44 T41 T2 T21 T24 T8 T57 T58 T3 T46 T39 T13 T1 T6 T17 T56 T53 T33 T36 T49 T42 T9 T37 T27 T52 T51 T28 T35 T14 T23 T5 T10 T30 T48 T60 T54 T19 T11 T43 T32 T29 T38 T34 T20 T16 T7 T25 T59 T18 T4
T41 T41 T23 T45 T46 T13 T16 T24 T56 T48 T32 T42 T39 T5 T22 T25 T6 T55 T54 T59 T47 T40 T14 T2 T7 T15 T57 T51 T34 T37 T50 T43 T10 T38 T28 T53 T52 T29 T33 T12 T21 T1 T11 T31 T49 T3 T4 T20 T9 T44 T30 T27 T36 T35 T18 T17 T8 T26 T60 T19 T58
T42 T42 T24 T41 T44 T19 T13 T32 T58 T56 T23 T45 T47 T6 T28 T22 T59 T53 T55 T5 T38 T37 T15 T10 T2 T34 T50 T57 T14 T43 T51 T40 T7 T39 T25 T54 T49 T21 T20 T33 T31 T3 T1 T29 T4 T11 T52 T12 T60 T36 T26 T30 T46 T17 T35 T18 T9 T27 T8 T16 T48
T43 T43 T25 T39 T42 T20 T14 T30 T54 T57 T21 T46 T45 T7 T29 T23 T60 T51 T56 T1 T36 T38 T16 T11 T5 T35 T48 T55 T12 T44 T52 T41 T8 T40 T26 T4 T50 T22 T18 T34 T32 T59 T2 T27 T58 T9 T53 T13 T3 T37 T24 T31 T47 T15 T33 T19 T10 T28 T6 T17 T49
T44 T44 T26 T40 T43 T18 T12 T31 T4 T55 T22 T47 T46 T8 T27 T21 T3 T52 T57 T2 T37 T36 T17 T9 T1 T33 T49 T56 T13 T42 T53 T39 T6 T41 T24 T58 T48 T23 T19 T35 T30 T60 T5 T28 T54 T10 T51 T14 T59 T38 T25 T32 T45 T16 T34 T20 T11 T29 T7 T15 T50
T45 T45 T32 T42 T36 T16 T19 T23 T48 T58 T24 T41 T38 T59 T25 T28 T5 T54 T53 T6 T39 T43 T34 T7 T10 T14 T51 T50 T15 T40 T57 T37 T2 T47 T22 T55 T4 T31 T12 T20 T29 T11 T3 T21 T52 T1 T49 T33 T8 T46 T27 T26 T44 T18 T17 T35 T60 T30 T9 T13 T56
T46 T46 T30 T43 T37 T17 T20 T21 T49 T54 T25 T39 T36 T60 T26 T29 T1 T4 T51 T7 T40 T44 T35 T8 T11 T12 T52 T48 T16 T41 T55 T38 T5 T45 T23 T56 T58 T32 T13 T18 T27 T9 T59 T22 T53 T2 T50 T34 T6 T47 T28 T24 T42 T19 T15 T33 T3 T31 T10 T14 T57
T47 T47 T31 T44 T38 T15 T18 T22 T50 T4 T26 T40 T37 T3 T24 T27 T2 T58 T52 T8 T41 T42 T33 T6 T9 T13 T53 T49 T17 T39 T56 T36 T1 T46 T21 T57 T54 T30 T14 T19 T28 T10 T60 T23 T51 T5 T48 T35 T7 T45 T29 T25 T43 T20 T16 T34 T59 T32 T11 T12 T55
T48 T48 T56 T23 T30 T58 T41 T42 T45 T16 T13 T19 T54 T55 T53 T39 T47 T38 T25 T22 T28 T51 T57 T50 T40 T37 T43 T7 T2 T10 T34 T14 T15 T5 T6 T59 T11 T1 T3 T52 T49 T4 T12 T33 T20 T31 T29 T21 T18 T35 T17 T9 T60 T8 T27 T46 T44 T36 T26 T24 T32
T49 T49 T57 T21 T31 T54 T39 T43 T46 T17 T14 T20 T4 T56 T51 T40 T45 T36 T26 T23 T29 T52 T55 T48 T41 T38 T44 T8 T5 T11 T35 T12 T16 T1 T7 T60 T9 T2 T59 T53 T50 T58 T13 T34 T18 T32 T27 T22 T19 T33 T15 T10 T3 T6 T28 T47 T42 T37 T24 T25 T30
T50 T50 T55 T22 T32 T4 T40 T44 T47 T15 T12 T18 T58 T57 T52 T41 T46 T37 T24 T21 T27 T53 T56 T49 T39 T36 T42 T6 T1 T9 T33 T13 T17 T2 T8 T3 T10 T5 T60 T51 T48 T54 T14 T35 T19 T30 T28 T23 T20 T34 T16 T11 T59 T7 T29 T45 T43 T38 T25 T26 T31
T51 T51 T53 T28 T23 T52 T37 T36 T38 T34 T33 T35 T48 T50 T49 T42 T44 T43 T32 T31 T30 T54 T58 T4 T47 T46 T45 T59 T3 T60 T20 T19 T18 T10 T9 T11 T7 T6 T8 T57 T56 T55 T15 T17 T16 T26 T25 T24 T12 T14 T13 T1 T5 T2 T21 T41 T40 T39 T22 T27 T29
T52 T52 T51 T29 T21 T53 T38 T37 T36 T35 T34 T33 T49 T48 T50 T43 T42 T44 T30 T32 T31 T4 T54 T58 T45 T47 T46 T60 T59 T3 T18 T20 T19 T11 T10 T9 T8 T7 T6 T55 T57 T56 T16 T15 T17 T24 T26 T25 T13 T12 T14 T2 T1 T5 T22 T39 T41 T40 T23 T28 T27
T53 T53 T52 T27 T22 T51 T36 T38 T37 T33 T35 T34 T50 T49 T48 T44 T43 T42 T31 T30 T32 T58 T4 T54 T46 T45 T47 T3 T60 T59 T19 T18 T20 T9 T11 T10 T6 T8 T7 T56 T55 T57 T17 T16 T15 T25 T24 T26 T14 T13 T12 T5 T2 T1 T23 T40 T39 T41 T21 T29 T28
T54 T54 T49 T30 T28 T57 T46 T39 T43 T20 T17 T14 T51 T4 T56 T36 T40 T45 T29 T26 T23 T48 T52 T55 T44 T41 T38 T11 T8 T5 T16 T35 T12 T60 T1 T7 T59 T9 T2 T58 T53 T50 T18 T13 T34 T22 T32 T27 T15 T19 T33 T6 T10 T3 T24 T37 T47 T42 T31 T21 T25
T55 T55 T4 T26 T25 T50 T44 T47 T40 T12 T18 T15 T57 T52 T58 T46 T37 T41 T21 T27 T24 T56 T49 T53 T36 T42 T39 T1 T9 T6 T13 T17 T33 T8 T3 T2 T5 T60 T10 T48 T54 T51 T35 T19 T14 T28 T23 T30 T34 T16 T20 T59 T7 T11 T32 T43 T38 T45 T29 T31 T22
T56 T56 T58 T24 T26 T48 T42 T45 T41 T13 T19 T16 T55 T53 T54 T47 T38 T39 T22 T28 T25 T57 T50 T51 T37 T43 T40 T2 T10 T7 T14 T15 T34 T6 T59 T5 T1 T3 T11 T49 T4 T52 T33 T20 T12 T29 T21 T31 T35 T17 T18 T60 T8 T9 T30 T44 T36 T46 T27 T32 T23
T57 T57 T54 T25 T24 T49 T43 T46 T39 T14 T20 T17 T56 T51 T4 T45 T36 T40 T23 T29 T26 T55 T48 T52 T38 T44 T41 T5 T11 T8 T12 T16 T35 T7 T60 T1 T2 T59 T9 T50 T58 T53 T34 T18 T13 T27 T22 T32 T33 T15 T19 T3 T6 T10 T31 T42 T37 T47 T28 T30 T21
T58 T58 T48 T32 T27 T56 T45 T41 T42 T19 T16 T13 T53 T54 T55 T38 T39 T47 T28 T25 T22 T50 T51 T57 T43 T40 T37 T10 T7 T2 T15 T34 T14 T59 T5 T6 T3 T11 T1 T4 T52 T49 T20 T12 T33 T21 T31 T29 T17 T18 T35 T8 T9 T60 T26 T36 T46 T44 T30 T23 T24
T59 T59 T11 T9 T53 T7 T60 T5 T10 T3 T8 T2 T34 T20 T16 T35 T14 T19 T33 T17 T13 T32 T29 T25 T30 T23 T28 T31 T26 T22 T24 T27 T21 T18 T12 T15 T47 T44 T40 T45 T38 T43 T46 T41 T37 T39 T42 T36 T57 T58 T52 T55 T50 T4 T56 T51 T54 T48 T49 T1 T6
T60 T60 T9 T10 T51 T8 T3 T1 T11 T59 T6 T5 T35 T18 T17 T33 T12 T20 T34 T15 T14 T30 T27 T26 T31 T21 T29 T32 T24 T23 T25 T28 T22 T19 T13 T16 T45 T42 T41 T46 T36 T44 T47 T39 T38 T40 T43 T37 T55 T54 T53 T56 T48 T58 T57 T52 T4 T49 T50 T2 T7